Open sets of diffeomorphisms with trivial centralizer in the C1 topology

被引:10
作者
Bakker, Lennard [1 ]
Fisher, Todd [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Anosov; hyperbolic; centralizer; rigidity; AUTOMORPHISMS; RIGIDITY;
D O I
10.1088/0951-7715/27/12/2869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the torus of dimension 2, 3 or 4, we show that the subset of diffeomorphisms with trivial centralizer in the C-1 topology has nonempty interior. We do this by developing two approaches, the fixed point and the odd prime periodic point, to obtain a trivial centralizer for an open neighbourhood of Anosov diffeomorphisms arbitrarily near certain irreducible hyperbolic toral automorphisms.
引用
收藏
页码:2869 / 2885
页数:17
相关论文
共 28 条
[11]  
Cohen H, 1993, GRADUATE TEXTS MATH, V138, DOI DOI 10.1007/978-3-662-02945-9
[12]   Trivial centralizers for axiom A diffeomorphisms [J].
Fisher, Todd .
NONLINEARITY, 2008, 21 (11) :2505-2517
[13]   Trivial centralizers for codimension-one attractors [J].
Fisher, Todd .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :51-56
[14]  
Hungerford T., 1974, GRADUATE TEXTS MATH, V73
[15]  
Jacobson N., 1953, Lectures in abstract algebra, II: Linear algebra
[16]   Rigidity of measurable structure for Zd-actions by automorphisms of a torus [J].
Katok, A ;
Katok, S ;
Schmidt, K .
COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (04) :718-745
[17]  
KATOK A., 1995, Introduction to the Modern Theory of Dynamical Systems
[18]  
Kopell N., 1970, Global Analysis, P165
[19]  
PALIS J, 1989, ANN SCI ECOLE NORM S, V22, P81
[20]  
PALIS J, 1989, ANN SCI ECOLE NORM S, V22, P99