Open sets of diffeomorphisms with trivial centralizer in the C1 topology

被引:10
作者
Bakker, Lennard [1 ]
Fisher, Todd [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Anosov; hyperbolic; centralizer; rigidity; AUTOMORPHISMS; RIGIDITY;
D O I
10.1088/0951-7715/27/12/2869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the torus of dimension 2, 3 or 4, we show that the subset of diffeomorphisms with trivial centralizer in the C-1 topology has nonempty interior. We do this by developing two approaches, the fixed point and the odd prime periodic point, to obtain a trivial centralizer for an open neighbourhood of Anosov diffeomorphisms arbitrarily near certain irreducible hyperbolic toral automorphisms.
引用
收藏
页码:2869 / 2885
页数:17
相关论文
共 28 条
[1]   HOMEOMORPHIC CONJUGACY OF AUTOMORPHISMS ON TORUS [J].
ADLER, RL ;
PALAIS, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (06) :1222-&
[2]  
[Anonymous], 1963, USPEKHI MAT NAUK
[3]  
[Anonymous], 1999, STUDIES ADV MATH
[4]   Symmetries and reversing symmetries of toral automorphisms [J].
Baake, M ;
Roberts, JAG .
NONLINEARITY, 2001, 14 (04) :R1-R24
[5]  
Bakker L F, 2008, P DYN SYST APPL, V5, P53
[6]  
Bakker L F, 2008, C MATH, V112, P291
[7]   A PROFINITE GROUP INVARIANT FOR HYPERBOLIC TORAL AUTOMORPHISMS [J].
Bakker, Lennard F. ;
Rodrigues, Pedro Martins .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) :1965-1976
[8]   THE C1 GENERIC DIFFEOMORPHISM HAS TRIVIAL CENTRALIZER [J].
Bonatti, Christian ;
Crovisier, Sylvain ;
Wilkinson, Amie .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 109, 2009, (109) :185-244
[9]  
Bonatti C, 2008, ANN SCI ECOLE NORM S, V41, P925
[10]   Centralizers of partially hyperbolic diffeomorphisms [J].
Burslem, L .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :55-87