A Hybrid Learning and Optimization Framework to Achieve Physically Interactive Tasks With Mobile Manipulators

被引:14
作者
Zhao, Jianzhuang [1 ,2 ]
Giammarino, Alberto [1 ]
Lamon, Edoardo [1 ]
Gandarias, Juan M. [1 ]
De Momi, Elena [2 ]
Ajoudani, Arash [1 ]
机构
[1] Ist Italiano Tecnol, Human Robot Interfaces & Phys Interact Lab, I-16163 Genoa, Italy
[2] Politecn Milan, Dept Elect Informat & Bioengn, I-20133 Milan, Italy
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2022年 / 7卷 / 03期
基金
欧洲研究理事会;
关键词
Compliance and impedance control; mobile manipulation; imitation learning; VARIABLE IMPEDANCE CONTROL; ROBOTS;
D O I
10.1109/LRA.2022.3187258
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter proposes a hybrid learning and optimization framework for mobile manipulators for complex and physically interactive tasks. The framework exploits an admittance-type physical interface to obtain intuitive and simplified human demonstrations and Gaussian Mixture Model (GMM)/Gaussian Mixture Regression (GMR) to encode and generate the learned task requirements in terms of position, velocity, and force profiles. Next, using the desired trajectories and force profiles generated by GMM/GMR, the impedance parameters of a Cartesian impedance controller are optimized online through a Quadratic Program augmented with an energy tank to ensure the passivity of the controlled system. Two experiments are conducted to validate the framework, comparing our method with two approaches with constant stiffness (high and low). The results showed that the proposed method outperforms the other two cases in terms of trajectory tracking and generated interaction forces, even in the presence of disturbances such as unexpected end-effector collisions.
引用
收藏
页码:8036 / 8043
页数:8
相关论文
共 23 条
[1]   Variable Impedance Control and Learning-A Review [J].
Abu-Dakka, Fares J. ;
Saveriano, Matteo .
FRONTIERS IN ROBOTICS AND AI, 2020, 7
[2]   Force-based variable impedance learning for robotic manipulation [J].
Abu-Dakka, Fares J. ;
Rozo, Leonel ;
Caldwell, Darwin G. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 109 :156-167
[3]  
Averta G, 2020, P IEEE RAS-EMBS INT, P973, DOI [10.1109/biorob49111.2020.9224382, 10.1109/BioRob49111.2020.9224382]
[4]   A method for autonomous robotic manipulation through exploratory interactions with uncertain environments [J].
Balatti, Pietro ;
Kanoulas, Dimitrios ;
Tsagarakis, Nikos ;
Ajoudani, Arash .
AUTONOMOUS ROBOTS, 2020, 44 (08) :1395-1410
[5]  
Bishop C. M, 2006, PATTERN RECOGN
[6]  
Bogh S., 2014, P ISR ROB 41 INT S R, P1
[7]   Learning variable impedance control [J].
Buchli, Jonas ;
Stulp, Freek ;
Theodorou, Evangelos ;
Schaal, Stefan .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07) :820-833
[8]   Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies [J].
Calinon, Sylvain ;
Sardellitti, Irene ;
Caldwell, Darwin G. .
IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, :249-254
[9]  
Calinon S., 2019, HUMANOID ROBOTICS RE, P1261
[10]  
Dietrich A, 2016, AUTON ROBOT, V40, P505, DOI 10.1007/s10514-015-9438-z