Modular solution of dynamic multi-phase systems

被引:58
作者
Ou, Y [1 ]
Dugan, JB [1 ]
机构
[1] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
关键词
binary decision diagram (BDD); coverage model; dynamic fault tree; Markov chain; modularization; module joint probability; phase algebra; phase module;
D O I
10.1109/TR.2004.837305
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Binary Decision Diagram (BDD)-based solution approaches and Markov chain based approaches are commonly used for the reliability analysis of multi-phase systems. These approaches either assume that every phase is static, and thus can be solved with combinatorial methods, or assume that every phase must be modeled via Markov methods. If every phase is indeed static, then the combinatorial approach is much more efficient than the Markov chain approach. But in a multi-phased system, using currently available techniques, if the failure criteria in even one phase is dynamic, then a Markov approach must be used for every phase. The problem with Markov chain based approaches is that the size of the Markov model can expand exponentially with an increase in the size of the system, and therefore becomes computationally intensive to solve. Two new concepts, phase module and module joint probability, are introduced in this paper to deal with the s-dependency among phases. We also present a new modular solution to nonrepairable dynamic multi-phase systems, which provides a combination of BDD solution techniques for static modules, and Markov chain solution techniques for dynamic modules. Our modular approach divides the multi-phase system into its static and dynamic subsystems, and solves them independently; and then combines the results for the solution of the entire system. using the module joint probability method. A hypothetical example multi-phase system is given to demonstrate the modular approach.
引用
收藏
页码:499 / 508
页数:10
相关论文
共 18 条
[1]   QUANTITATIVE RELIABILITY EVALUATION OF REPAIRABLE PHASED-MISSION SYSTEMS USING MARKOV APPROACH [J].
ALAM, M ;
ALSAGGAF, UM .
IEEE TRANSACTIONS ON RELIABILITY, 1986, 35 (05) :498-503
[2]  
Birkhoff G., 1948, Lattice Theory, VXXV
[3]   DIFtree: A software package for the analysis of dynamic fault tree models [J].
Dugan, JB ;
Venkataraman, B ;
Gulati, R .
ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM - 1997 PROCEEDINGS: THE INTERNATIONAL SYMPOSIUM ON PRODUCT QUALITY & INTEGRITY, 1997, :64-70
[4]   COVERAGE MODELING FOR DEPENDABILITY ANALYSIS OF FAULT-TOLERANT SYSTEMS [J].
DUGAN, JB ;
TRIVEDI, KS .
IEEE TRANSACTIONS ON COMPUTERS, 1989, 38 (06) :775-787
[5]  
DUTUIT Y, 1996, IEEE T REL SEP
[6]   A modular approach for analyzing static and dynamic fault trees [J].
Gulati, R ;
Dugan, JB .
ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM - 1997 PROCEEDINGS: THE INTERNATIONAL SYMPOSIUM ON PRODUCT QUALITY & INTEGRITY, 1997, :57-63
[7]  
Kohavi Z, 1978, SWITCHING FINITE AUT
[8]   FINDING MODULES IN FAULT-TREES [J].
KOHDA, T ;
HENLEY, EJ ;
INOUE, K .
IEEE TRANSACTIONS ON RELIABILITY, 1989, 38 (02) :165-176
[9]  
MESHKAT L, 2000, THESIS U VIRGINIA
[10]   Markov regenerative stochastic Petri nets to model and evaluate phased mission systems dependability [J].
Mura, I ;
Bondavalli, A .
IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (12) :1337-1351