A note on "Higher-order generalized Studniarski epiderivative and its applications in set-valued optimization" [Positivity 22:1371-1385 (2018)]

被引:0
作者
Tang, Tian [1 ]
Wang, Qilin [1 ]
Zhang, Xiaoyan [1 ]
Zhai, Yuwen [1 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
基金
中国国家自然科学基金;
关键词
The higher-order generalized Studniarski epiderivative; The converse dual theorem; Locally weak efficient solutions; OPTIMALITY CONDITIONS; EFFICIENT SOLUTIONS;
D O I
10.1007/s11117-021-00836-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we establish a property of the higher-order generalized Studniarski epiderivative. By virtue of the property, we demonstrate that conditions (6) and (12) of Theorem 4.3 in Anh (Positivity 22:1371-1385, 2018) are incompatible. We provide a modification of Theorem 4.3 in Anh (Positivity 22:1371-1385, 2018). An example is given to illustrate the modified result.
引用
收藏
页码:1651 / 1657
页数:7
相关论文
共 8 条
[1]  
Aubin JP, 1990, Set -valued analysis, DOI 10.1007/978-0-8176-4848-0
[2]   Higher-order optimality conditions for set-valued optimization [J].
Li, S. J. ;
Teo, K. L. ;
Yang, X. Q. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 137 (03) :533-553
[3]   New Generalized Second-Order Contingent Epiderivatives and Set-Valued Optimization Problems [J].
Li, S. J. ;
Zhu, S. K. ;
Teo, K. L. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) :587-604
[4]   Higher-order generalized Studniarski epiderivative and its applications in set-valued optimization [J].
Nguyen Le Hoang Anh .
POSITIVITY, 2018, 22 (05) :1371-1385
[6]   New higher-order weak lower inner epiderivatives and application to Karush-Kuhn-Tucker necessary optimality conditions in set-valued optimization [J].
Peng, Zhenhua ;
Wan, Zhongping ;
Guo, Yujia .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2020, 37 (03) :851-866
[7]   New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization [J].
Peng, Zhenhua ;
Xu, Yihong .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (01) :128-140
[8]   Higher-order optimality conditions for weakly efficient solutions in nonconvex set-valued optimization [J].
Wang, Q. L. ;
Li, S. J. ;
Teo, K. L. .
OPTIMIZATION LETTERS, 2010, 4 (03) :425-437