Quantum group symmetry in sine-Gordon and affine Toda field theories on the half-line

被引:70
作者
Delius, GW [1 ]
MacKay, NJ [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
关键词
D O I
10.1007/s00220-002-0758-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the sine-Gordon and affine Toda field theories on the half-line with classically integrable boundary conditions, and show that in the quantum theory a remnant survives of the bulk quantized affine algebra symmetry generated by non-local charges. The paper also develops a general framework for obtaining solutions of the reflection equation by solving an intertwining property for representations of certain coideal subalgebras of U-q ((g) over cap).
引用
收藏
页码:173 / 190
页数:18
相关论文
共 32 条
[1]   Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition [J].
Bajnok, Z ;
Palla, L ;
Takács, G .
NUCLEAR PHYSICS B, 2001, 614 (03) :405-448
[2]   QUANTUM GROUP SYMMETRIES AND NONLOCAL CURRENTS IN 2D QFT [J].
BERNARD, D ;
LECLAIR, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :99-138
[3]   CLASSICALLY INTEGRABLE BOUNDARY-CONDITIONS FOR AFFINE TODA FIELD-THEORIES [J].
BOWCOCK, P ;
CORRIGAN, E ;
DOREY, PE ;
RIETDIJK, RH .
NUCLEAR PHYSICS B, 1995, 445 (2-3) :469-500
[4]   FACTORIZING PARTICLES ON A HALF-LINE AND ROOT SYSTEMS [J].
CHEREDNIK, IV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 61 (01) :977-983
[5]   Particle reflection amplitudes in an(1) Toda field theories [J].
Delius, GW ;
Gandenberger, GM .
NUCLEAR PHYSICS B, 1999, 554 (1-2) :325-364
[6]   ON THE CONSTRUCTION OF TRIGONOMETRIC SOLUTIONS OF THE YANG-BAXTER EQUATION [J].
DELIUS, GW ;
GOULD, MD ;
ZHANG, YZ .
NUCLEAR PHYSICS B, 1994, 432 (1-2) :377-403
[7]   Boundary remnant of Yangian symmetry and the structure of rational reflection matrices [J].
Delius, GW ;
MacKay, NJ ;
Short, BJ .
PHYSICS LETTERS B, 2001, 522 (3-4) :335-344
[8]   Soliton-preserving boundary condition in affine Toda field theories [J].
Delius, GW .
PHYSICS LETTERS B, 1998, 444 (1-2) :217-223
[9]  
DELIUS GW, 1998, J HIGH ENERGY PHYS, P16
[10]  
DELIUS GW, UNPUB LETT MATH PHYS