Ultra-stable 1064-nm neodymium-doped yttrium aluminum garnet lasers with 2.5 x 10-16 frequency instability

被引:9
作者
Li, Liufeng [1 ,2 ,3 ]
Wang, Jia [1 ,4 ]
Bi, Jin [1 ,2 ,3 ]
Zhang, Tao [1 ,4 ]
Peng, Jiankang [1 ,4 ]
Zhi, Yunlin [1 ,4 ]
Chen, Lisheng [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 430071, Peoples R China
[2] State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[3] Chinese Acad Sci, Lab Atom Frequency Stand, Wuhan 430071, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
RESIDUAL AMPLITUDE-MODULATION; REFERENCE CAVITIES; NOISE; STABILIZATION; REDUCTION; CRYSTAL; PHASE; DRIFT;
D O I
10.1063/5.0025498
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Cavity-stabilized ultra-stable optical oscillators are one of the core ingredients in the ground-based or spaceborne precision measurements such as optical frequency metrology, test of special relativity, and gravitational wave observation. We report in detail the development of two ultra-stable systems based on 1064-nm neodymium-doped yttrium aluminum garnet lasers and 20-cm optical cavities. The optical cavities adopt ultra-low-loss silica mirrors with compensating rings. An electro-optic crystal with a wedged angle is used to reduce the residual amplitude modulation. Using two-stage thermal control, long-term stabilities of 100 mu K are achieved for the outer wall of the vacuum chamber housing the optical cavity. Two additional thermal shields increased the time constant of the optical cavities to 70 h. By operating the optical cavity at the temperature of zero coefficient of thermal expansion, the frequency stability reaches 2.5 x 10(-16) at 10 s averaging time and remains below 5 x 10(-16) with an extended time of 1000 s after removing the first- and second-order drifts. The dependence of the laser linewidth on the measurement time is tested against a simplified theoretical model.
引用
收藏
页数:8
相关论文
共 51 条
  • [1] Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/NPHYS2083, 10.1038/nphys2083]
  • [2] Observation of Gravitational Waves from a Binary Black Hole Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Arain, M. A.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [3] Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities
    Alnis, J.
    Matveev, A.
    Kolachevsky, N.
    Udem, Th.
    Haensch, T. W.
    [J]. PHYSICAL REVIEW A, 2008, 77 (05):
  • [4] Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results
    Armano, M.
    Audley, H.
    Auger, G.
    Baird, J. T.
    Bassan, M.
    Binetruy, P.
    Born, M.
    Bortoluzzi, D.
    Brandt, N.
    Caleno, M.
    Carbone, L.
    Cavalleri, A.
    Cesarini, A.
    Ciani, G.
    Congedo, G.
    Cruise, A. M.
    Danzmann, K.
    de Deus Silva, M.
    De Rosa, R.
    Diaz-Aguilo, M.
    Di Fiore, L.
    Diepholz, I.
    Dixon, G.
    Dolesi, R.
    Dunbar, N.
    Ferraioli, L.
    Ferroni, V.
    Fichter, W.
    Fitzsimons, E. D.
    Flatscher, R.
    Freschi, M.
    Marin, A. F. Garcia
    Marirrodriga, C. Garcia
    Gerndt, R.
    Gesa, L.
    Gibert, F.
    Giardini, D.
    Giusteri, R.
    Guzman, F.
    Grado, A.
    Grimani, C.
    Grynagier, A.
    Grzymisch, J.
    Harrison, I.
    Heinzel, G.
    Hewitson, M.
    Hollington, D.
    Hoyland, D.
    Hueller, M.
    Inchauspe, H.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (23)
  • [5] Bender P., 1998, MPQ233
  • [6] Suppressing residual amplitude modulation to the 10-7 level in optical phase modulation
    Bi, Jin
    Zhi, Yunlin
    Li, Liufeng
    Chen, Lisheng
    [J]. APPLIED OPTICS, 2019, 58 (03) : 690 - 694
  • [7] A Fermi-degenerate three-dimensional optical lattice clock
    Campbell, S. L.
    Hutson, R. B.
    Marti, G. E.
    Goban, A.
    Oppong, N. Darkwah
    McNally, R. L.
    Sonderhouse, L.
    Robinson, J. M.
    Zhang, W.
    Bloom, B. J.
    Ye, J.
    [J]. SCIENCE, 2017, 358 (6359) : 90 - 93
  • [8] Vibration-induced elastic deformation of Fabry-Perot cavities
    Chen, Lisheng
    Hall, John L.
    Ye, Jun
    Yang, Tao
    Zang, Erjun
    Li, Tianchu
    [J]. PHYSICAL REVIEW A, 2006, 74 (05):
  • [9] High-sensitivity crossed-resonator laser apparatus for improved tests of Lorentz invariance and of space-time fluctuations
    Chen, Q.
    Magoulakis, E.
    Schiller, S.
    [J]. PHYSICAL REVIEW D, 2016, 93 (02)
  • [10] Frequency Comparison of Two High-Accuracy Al+ Optical Clocks
    Chou, C. W.
    Hume, D. B.
    Koelemeij, J. C. J.
    Wineland, D. J.
    Rosenband, T.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (07)