Advances in GaN laser diodes for quantum sensors and optical atomic clocks

被引:0
|
作者
Najda, S. P. [1 ]
Perlin, P. [1 ]
Leszczynski, M. [1 ]
Stanczyk, S. [1 ]
Clark, C. C. [2 ]
Slight, T. J. [3 ]
Macarthur, J. [4 ]
Prade, L. [4 ]
McKnight, L. [4 ]
机构
[1] TopGaN Ltd, Ul Sokolowska 29-37, PL-01142 Warsaw, Poland
[2] Helia Photon Ltd, Rosebank Technol Pk, Kirkton Campus, Livingston EH54 7EJ, Scotland
[3] Compound Semicond Technol Global Ltd, Hamilton G72 0BN, Scotland
[4] Fraunhofer Ctr Appl Photon, Technol & Innovat Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
来源
EMERGING IMAGING AND SENSING TECHNOLOGIES FOR SECURITY AND DEFENCE V; AND ADVANCED MANUFACTURING TECHNOLOGIES FOR MICRO- AND NANOSYSTEMS IN SECURITY AND DEFENCE III | 2020年 / 11540卷
基金
“创新英国”项目;
关键词
GaN laser; GaN systems; GaN laser bars; tapered laser diodes;
D O I
10.1117/12.2566465
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum technologies containing key GaN laser components will enable a new generation of precision sensors, optical atomic clocks and secure communication systems for many applications such as next generation navigation, gravity mapping and timing since the AlGaInN material system allows for laser diodes to be fabricated over a wide range of wavelengths from the u.v. to the visible. We report our latest results on a range of AlGaInN diode-lasers targeted to meet the linewidth, wavelength and power requirements suitable for optical clocks and cold-atom interferometry systems. This includes the [5s(2)S(1/2)-5p(2)P(1/2)] cooling transition in strontium(+) ion optical clocks at 422 nm, the [5s(2)(1)S(0)-5p(1)P(1)] cooling transition in neutral strontium clocks at 461 nm and the [5s(2)s(1/2) - 6p(2)P(3/2)] transition in rubidium at 420 nm. Several approaches are taken to achieve the required linewidth, wavelength and power, including an extended cavity laser diode (ECLD) system and an on-chip grating, distributed feedback (DFB) GaN laser diode.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Quantum engineering of atomic phase shifts in optical clocks
    Zanon-Willette, T.
    Almonacil, S.
    de Clercq, E.
    Ludlow, A. D.
    Arimondo, E.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [22] Atomic clocks and inertial sensors
    Bordé, CJ
    METROLOGIA, 2002, 39 (05) : 435 - 463
  • [23] Quantum theory of atomic clocks and gravito-inertial sensors:: an update
    Antoine, C
    Bordé, CJ
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : S199 - S207
  • [24] Optical characterization of InGaN/GaN quantum well active region of green laser diodes
    Tian, Aiqin
    Liu, Jianping
    Zhang, Liqun
    Ikeda, Masao
    Fan, Xiaowang
    Zhang, Shuming
    Li, Deyao
    Zhang, Feng
    Wen, Pengyan
    Cheng, Yang
    Yang, Hui
    APPLIED PHYSICS EXPRESS, 2017, 10 (01)
  • [25] Optical atomic clocks
    N. Poli
    C. W. Oates
    P. Gill
    G. M. Tino
    La Rivista del Nuovo Cimento, 2013, 36 : 555 - 624
  • [26] Optical atomic clocks
    Ludlow, Andrew D.
    Boyd, Martin M.
    Ye, Jun
    Peik, E.
    Schmidt, P. O.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (02) : 637 - 701
  • [27] Optical Atomic Clocks
    Wineland, David J.
    2019 URSI ASIA-PACIFIC RADIO SCIENCE CONFERENCE (AP-RASC), 2019,
  • [28] Optical atomic clocks
    Poli, N.
    Oates, C. W.
    Gill, P.
    Tino, G. M.
    RIVISTA DEL NUOVO CIMENTO, 2013, 36 (12): : 555 - 624
  • [29] Trapped-ion optical atomic clocks at the quantum limits
    Leibrandt, David R.
    Brewer, Samuel M.
    Chen, Jwo-Sy
    Chou, Chin-Wen
    Hankin, Aaron M.
    Hume, David B.
    Wineland, David J.
    PROCEEDINGS OF THE 48TH ANNUAL PRECISE TIME AND TIME INTERVAL SYSTEMS AND APPLICATIONS MEETING, 2017, : 48 - 52
  • [30] DFB-ridge laser diodes at 894 nm for Cesium atomic clocks
    Von Bandel, N.
    Garcia, M.
    Lecomte, M.
    Larrue, A.
    Robert, Y.
    Vinet, E.
    Driss, O.
    Parillaud, O.
    Krakowski, M.
    Gruet, F.
    Matthey, R.
    Mileti, G.
    QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIII, 2016, 9755