Twisted quantum affinizations and their vertex representations

被引:5
作者
Chen, Fulin [1 ]
Jing, Naihuan [2 ]
Kong, Fei [3 ]
Tan, Shaobin [1 ]
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
[2] North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
[3] South China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
基金
中国博士后科学基金;
关键词
KAC-MOODY ALGEBRAS; AFFINE ALGEBRAS; DRINFELD REALIZATION; LIE-ALGEBRAS;
D O I
10.1063/1.5023790
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we generalize Drinfeld's twisted quantum affine algebras to construct twisted quantum algebras for all simply laced generalized Cartan matrices and present their vertex representation realizations. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 23 条
[1]  
Allison BN., 1997, MEM AM MATH SOC, V126, P605
[2]   Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2 [J].
Allison, Bruce ;
Berman, Stephen ;
Pianzola, Arturo .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (02) :327-385
[3]   Quantum tori and the structure of elliptic quasi-simple Lie algebras [J].
Berman, S ;
Gao, Y ;
Krylyuk, YS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :339-389
[4]   Twisted Vertex Operators and Unitary Lie Algebras [J].
Chen, Fulin ;
Gao, Yun ;
Jing, Naihuan ;
Tan, Shaobin .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (03) :573-596
[5]   From the Drinfeld Realization to the Drinfeld-Jimbo Presentation of Affine Quantum Algebras: Injectivity [J].
Damiani, Ilaria .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2015, 51 (01) :131-171
[6]   Drinfeld Realization of Affine Quantum Algebras: the Relations [J].
Damiani, Ilaria .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (03) :661-733
[7]  
Drinfeld V., 1988, Sov. Math. Dokl., V36, P212
[8]   QUANTUM AFFINE ALGEBRAS AND HOLONOMIC DIFFERENCE-EQUATIONS [J].
FRENKEL, IB ;
RESHETIKHIN, NY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :1-60
[9]   VERTEX REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS [J].
FRENKEL, IB ;
JING, NH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (24) :9373-9377
[10]   From Dynkin diagram symmetries to fixed point structures [J].
Fuchs, J ;
Schellekens, B ;
Schweigert, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (01) :39-97