Ionic liquids: not always innocent solvents for cellulose

被引:149
作者
Clough, Matthew T. [1 ]
Geyer, Karolin [2 ]
Hunt, Patricia A. [1 ]
Son, Sunghee [2 ]
Vagt, Uwe [2 ]
Welton, Tom [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] BASF SE, Ludwigshafen, Germany
基金
英国工程与自然科学研究理事会;
关键词
N-HETEROCYCLIC CARBENES; THERMAL-DEGRADATION; SIDE REACTION; DISSOLUTION; LIGNOCELLULOSE; STABILITY; ACID; SOLVATION; MECHANISM; CAPTURE;
D O I
10.1039/c4gc01955e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The decomposition pathways of a series of carbohydrates dissolved in carboxylate ionic liquids have been investigated in detail using a broad range of thermal and chromatographic techniques. Mixtures of the carboxylate ionic liquid 1-ethyl-3-methylimidazolium acetate with carbohydrates were found to undergo reaction of the C-2 carbon of the imidazolium ring with the aldehyde functionality on the open chain sugar, yielding an imidazolium adduct with a hydroxylated alkyl chain. Subsequently, degradation of the hydroxyalkyl chain occurs by sequential loss of formaldehyde units, to yield a terminal adduct species, 1-ethyl-2-(hydroxymethyl)-3-methylimidazolium acetate. Identities of the final and intermediate adduct species, and the reaction mechanisms connecting adducts, were elucidated by NMR, HPLC and LCMS techniques. Factors affecting the rate and quantity of adduct formation were explored. Changing the ionic liquid cation and anion, the acid number, sugar concentration and temperature influenced the rate of formation and relative quantities of the adduct species. Formation of adducts could not be entirely prevented when employing carboxylate ionic liquids. By contrast, 1-butyl-3-methylimidazolium chloride was identified as an ionic liquid capable of dissolving a significant quantity of cellulose, yet without reacting with carbohydrates.
引用
收藏
页码:231 / 243
页数:13
相关论文
共 80 条
[1]   Understanding the polarity of ionic liquids [J].
Ab Rani, M. A. ;
Brant, A. ;
Crowhurst, L. ;
Dolan, A. ;
Lui, M. ;
Hassan, N. H. ;
Hallett, J. P. ;
Hunt, P. A. ;
Niedermeyer, H. ;
Perez-Arlandis, J. M. ;
Schrems, M. ;
Welton, T. ;
Wilding, R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (37) :16831-16840
[2]   Formation and stability of N-heterocyclic carbenes in water:: The carbon acid pKa of imidazollum cations in aqueous solution [J].
Amyes, TL ;
Diver, ST ;
Richard, JP ;
Rivas, FM ;
Toth, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (13) :4366-4374
[3]   A STABLE CRYSTALLINE CARBENE [J].
ARDUENGO, AJ ;
HARLOW, RL ;
KLINE, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1991, 113 (01) :361-363
[4]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[5]   Low melting Li/K/Cs acetate salt mixtures as new ionic media for catalytic applications - first physico-chemical characterization [J].
Bajus, Stephanie ;
Deyko, Alexey ;
Boesmann, Andreas ;
Maier, Florian ;
Steinrueck, Hans-Peter ;
Wasserscheid, Peter .
DALTON TRANSACTIONS, 2012, 41 (47) :14433-14438
[6]   Thermal degradation of ionic liquids at elevated temperatures [J].
Baranyai, KJ ;
Deacon, GB ;
MacFarlane, DR ;
Pringle, JM ;
Scott, JL .
AUSTRALIAN JOURNAL OF CHEMISTRY, 2004, 57 (02) :145-147
[7]   Deconstruction of lignocellulosic biomass with ionic liquids [J].
Brandt, Agnieszka ;
Grasvik, John ;
Hallett, Jason P. ;
Welton, Tom .
GREEN CHEMISTRY, 2013, 15 (03) :550-583
[8]   Ionic Liquids for CO2 Capture and Emission Reduction [J].
Brennecke, Joan E. ;
Gurkan, Burcu E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3459-3464
[10]   Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis [J].
Cao, Yuanyuan ;
Mu, Tiancheng .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (20) :8651-8664