Approximate renormalization with codimension-one fixed point for the break-up of some three-frequency tori

被引:9
作者
Chandre, C [1 ]
MacKay, RS
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
renormalization; invariant tori; Hamiltonian system;
D O I
10.1016/S0375-9601(00)00599-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An approximate renormalization transformation is constructed for Hamiltonian systems with three degrees of freedom to study the break-up of invariant tori with a three-dimensional frequency vector from the cubic field Q(tau), where tau (3) + tau (2) - 2 tau - 1 = 0. This renormalization has two fixed points: an attracting one and a hyperbolic one with codimension-one stable manifold. The associated critical exponents that characterize the universality class for the break-up of these invariant tori are computed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:394 / 400
页数:7
相关论文
共 16 条
[1]   A version of Thirring's approach to the Kolmogorov-Arnold-Moser theorem for quadratic Hamiltonians with degenerate twist [J].
Chandre, C ;
Jauslin, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :5856-5865
[2]   Critical attractor and universality in a renormalization scheme for three frequency Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1998, 81 (23) :5125-5128
[3]   Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom [J].
Chandre, C ;
Jauslin, HR ;
Benfatto, G ;
Celletti, A .
PHYSICAL REVIEW E, 1999, 60 (05) :5412-5421
[4]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[5]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[6]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[7]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261
[8]   SIMULTANEOUS RATIONAL-APPROXIMATIONS IN THE STUDY OF DYNAMIC-SYSTEMS [J].
KIM, SH ;
OSTLUND, S .
PHYSICAL REVIEW A, 1986, 34 (04) :3426-3434
[9]   A renormalization group for Hamiltonians, with applications to KAM tori [J].
Koch, H .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 :475-521
[10]   UNIVERSAL SMALL-SCALE STRUCTURE NEAR THE BOUNDARY OF SIEGEL DISKS OF ARBITRARY ROTATION NUMBER [J].
MACKAY, RS ;
PERCIVAL, IC .
PHYSICA D, 1987, 26 (1-3) :193-202