A 200-μW Interface for High-Resolution Eddy-Current Displacement Sensors

被引:7
|
作者
Pimenta, Matheus [1 ]
Gurleyuk, Cagri [2 ]
Walsh, Paul [1 ]
O'Keeffe, Daniel [1 ]
Babaie, Masoud [2 ]
Makinwa, Kofi A. A. [2 ]
机构
[1] Infineon Technol, Cork T12 F76C, Ireland
[2] Delft Univ Technol, Dept Microelect, NL-2628 CD Delft, Netherlands
关键词
Digitally controlled oscillator (DCO); displacement; eddy-current sensor interface; low power; phase-locked loop (PLL); PHASE NOISE;
D O I
10.1109/JSSC.2020.3044027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a low-power eddy-current sensor interface for touch applications. It is based on a bang-bang digital phase-locked loop (DPLL) that converts the displacement of a metal target into digital information. The PLL consists of a digitally controlled oscillator (DCO) built around a sensing coil and a capacitive DAC, a comparator-based bang-bang phase/frequency detector (PFD), and a digital loop filter (DLF). The PLL locks the DCO to a reference frequency, making its digital input a direct representation of the sensing coil inductance. To compensate for the coil inductance tolerances, the DCO's center frequency can be trimmed by a second capacitive DAC. This approach obviates the need for a reference coil. When combined with a 5-mm-diameter sensing coil located 500 mu m from a metal target, the interface achieves a displacement resolution of 6.7 nm (rms) in a 3-kHz bandwidth. It consumes 200 mu W from a 1.8-V power supply, which represents the bestreported tradeoff between power consumption, bandwidth, and resolution.
引用
收藏
页码:1036 / 1045
页数:10
相关论文
共 50 条
  • [21] Optimization of the structural parameters of an eddy-current displacement transducer
    Gol'dshtein, AE
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 1997, 33 (05) : 334 - 337
  • [22] Impedance of the eddy-current displacement probe: The transformer model
    Vyroubal, D
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2004, 53 (02) : 384 - 391
  • [23] Eddy current evaluation for a high-resolution EB system
    Shimomura, N
    Ogasawara, M
    Hattori, K
    Takamatsu, J
    Sunaoshi, H
    Yoshitake, S
    Fukudome, Y
    Akeno, K
    20TH ANNUAL BACUS SYMPOSIUM ON PHOTOMASK TECHNOLOGY, 2000, 4186 : 460 - 467
  • [24] Eddy-Current Sensors with Asymmetrical Point Spread Function
    Gajda, Janusz
    Stencel, Marek
    SENSORS, 2016, 16 (10)
  • [25] INDUSTRIAL EDDY-CURRENT SENSORS FOR TOUCHLESS THICKNESS MEASUREMENT
    PLACKO, D
    CLERGEOT, H
    SANTANDER, E
    CONFERENCE RECORD OF THE 1989 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, PTS 1-2, 1989, : 1487 - 1492
  • [26] THICKNESS TOUCHLESS MEASUREMENTS USING EDDY-CURRENT SENSORS
    PLACKO, D
    SOL, C
    JACOB, D
    ELECTRIC MACHINES AND POWER SYSTEMS, 1989, 17 (02): : 125 - 137
  • [27] PROBE-SIGNAL SYNTHESIS FOR EDDY-CURRENT SENSORS
    STEBLEV, YI
    SOVIET JOURNAL OF NONDESTRUCTIVE TESTING-USSR, 1986, 22 (08): : 555 - 562
  • [28] Wirbelstrombremsfeste RadsensorenWheel sensors, fit for eddy-current brakes
    J. Frauscher
    F. Pointner
    e&i Elektrotechnik und Informationstechnik, 2000, 117 (3) : 226 - 230
  • [29] Use of GMR-sensors for eddy-current testing
    Yashan, A
    Becker, R
    Dobmann, G
    ELECTROMAGNETIC NONDESTRUCTIVE EVALUATION (V), 2001, 21 : 187 - 193
  • [30] Shaped-field eddy-current sensors and arrays
    Washabaugh, A
    Zilberstein, V
    Schlicker, D
    Shay, I
    Grundy, D
    Goldfine, N
    SMART NONDESTRUCTIVE EVALUATION FOR HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS, 2002, 4702 : 63 - 75