Electroosmotic guiding of sample flows in a laminar flow chamber

被引:15
作者
Besselink, GAJ
Vulto, P
Lammertink, RGH
Schlautmann, S
van den Berg, A
Olthuis, W
Engbers, GHM
Schasfoort, RBM
机构
[1] Univ Twente, Biochip Grp, MESA, Inst Res,TN 10218, NL-7522 NB Enschede, Netherlands
[2] IBIS Technol Bv, Hengelo, Netherlands
关键词
address flow; electroosmotic flow; microfabrication; microfluidics; miniaturization;
D O I
10.1002/elps.200406033
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The so-called address-flow principle is described: a valveless, electroosmotically driven technology used for controlling the stream profile in a laminar flow chamber. The method is explained, and a theoretical description and experimental verification are presented. Adjustment of the flow of two electroosmotically controlled guiding streams, running parallel to a central sample stream, can be used for positioning the sample stream in the dimension perpendicular to the flow direction. The results presented show that address-flow microfluidics allow easy and accurate control of sample stream position and width. The electroosmotic flow (EOF)-controlled guiding of microfluidic flows described in this paper, is a new unit operation that might aid in separation and collection in microfluidic devices. One possible application of address-flow microfluidics is guiding of capillary electrophoresis-separated components over a multisensor array, in order to perform affinity assays.
引用
收藏
页码:3705 / 3711
页数:7
相关论文
共 24 条
[1]   Biotechnology at low Reynolds numbers [J].
Brody, JP ;
Yager, P ;
Goldstein, RE ;
Austin, RH .
BIOPHYSICAL JOURNAL, 1996, 71 (06) :3430-3441
[2]   CAPILLARY ELECTROPHORESIS AND SAMPLE INJECTION SYSTEMS INTEGRATED ON A PLANAR GLASS CHIP [J].
HARRISON, DJ ;
MANZ, A ;
FAN, ZH ;
LUDI, H ;
WIDMER, HM .
ANALYTICAL CHEMISTRY, 1992, 64 (17) :1926-1932
[3]   A rapid diffusion immunoassay in a T-sensor [J].
Hatch, A ;
Kamholz, AE ;
Hawkins, KR ;
Munson, MS ;
Schilling, EA ;
Weigl, BH ;
Yager, P .
NATURE BIOTECHNOLOGY, 2001, 19 (05) :461-465
[4]   Further development of an electroosmotic medium pump system for preparative disk gel electrophoresis [J].
Hayakawa, M ;
Hosogi, Y ;
Takiguchi, H ;
Shiroza, T ;
Shibata, Y ;
Hiratsuka, K ;
Kiyama-Kishikawa, M ;
Hamajima, S ;
Abiko, Y .
ANALYTICAL BIOCHEMISTRY, 2003, 313 (01) :60-67
[5]   On-chip integration of sequential ion-sensing system based on intermittent reagent pumping and formation of two-layer flow [J].
Hisamoto, H ;
Horiuchi, T ;
Uchiyama, K ;
Tokeshi, M ;
Hibara, A ;
Kitamori, T .
ANALYTICAL CHEMISTRY, 2001, 73 (22) :5551-5556
[6]   OPEN-CHANNEL ELECTROCHROMATOGRAPHY ON A MICROCHIP [J].
JACOBSON, SC ;
HERGENRODER, R ;
KOUTNY, LB ;
RAMSEY, JM .
ANALYTICAL CHEMISTRY, 1994, 66 (14) :2369-2373
[7]   Microfabrication inside capillaries using multiphase laminar flow patterning [J].
Kenis, PJA ;
Ismagilov, RF ;
Whitesides, GM .
SCIENCE, 1999, 285 (5424) :83-85
[8]   Micropreparative fraction collection in microfluidic devices [J].
Khandurina, J ;
Chován, T ;
Guttman, A .
ANALYTICAL CHEMISTRY, 2002, 74 (07) :1737-1740
[9]   Multiple open-channel electroosmotic pumping system for microfluidic sample handling [J].
Lazar, IM ;
Karger, BL .
ANALYTICAL CHEMISTRY, 2002, 74 (24) :6259-6268
[10]  
LEE CS, 1997, HDB CAPILLARY ELECTR, P717