The splitting finite-difference time-domain methods for Maxwell's equations in two dimensions

被引:52
|
作者
Gao, Liping
Zhang, Bo [1 ]
Liang, Dong
机构
[1] Coventry Univ, Fac Engn & Comp, Dept Math Sci, Coventry CV1 5FB, W Midlands, England
[2] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
[3] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Maxwell's equations; splitting scheme; finite-difference time-domain; staggered grid; stability; convergence; perfectly conducting; scattering; perfectly matched layer;
D O I
10.1016/j.cam.2006.04.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider splitting methods for Maxwell's equations in two dimensions. A new kind of splitting finite-difference time-domain methods on a staggered grid is developed. The corresponding schemes consist of only two stages for each time step, which are very simple in computation. The rigorous analysis of the schemes is given. By the energy method, it is proved that the scheme is unconditionally stable and convergent for the problems with perfectly conducting boundary conditions. Numerical dispersion analysis and numerical experiments are presented to show the efficient performance of the proposed methods. Furthermore, the methods are also applied to solve a scattering problem successfully. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 230
页数:24
相关论文
共 50 条
  • [1] ENERGY-CONSERVED SPLITTING FINITE-DIFFERENCE TIME-DOMAIN METHODS FOR MAXWELL'S EQUATIONS IN THREE DIMENSIONS
    Chen, Wenbin
    Li, Xingjie
    Liang, Dong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1530 - 1554
  • [2] The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations
    Yee, KS
    Chen, JS
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) : 354 - 363
  • [3] Symplectic finite-difference time-domain method for Maxwell equations
    Jiang, Le-Le
    Mao, Jun-Fa
    Wu, Xian-Liang
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (08) : 1991 - 1995
  • [4] Survey on symplectic finite-difference time-domain schemes for Maxwell's equations
    Sha, Wei E. I.
    Huang, Zhixiang
    Chen, Mingsheng
    Wu, Xianliang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (02) : 493 - 500
  • [5] Time-domain finite-difference and finite-element methods for Maxwell equations in complex media
    Teixeira, Fernando L.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) : 2150 - 2166
  • [6] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [7] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [8] EFFICIENT IMPLEMENTATION ISSUES OF FINITE-DIFFERENCE TIME-DOMAIN CODES FOR MAXWELL EQUATIONS
    LOVETRI, J
    COSTACHE, GI
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1993, 6 (03) : 195 - 206
  • [9] A SUBGRIDDING METHOD FOR THE TIME-DOMAIN FINITE-DIFFERENCE METHOD TO SOLVE MAXWELL EQUATIONS
    ZIVANOVIC, SS
    YEE, KS
    MEI, KK
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1991, 39 (03) : 471 - 479
  • [10] A robust and efficient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations
    Vaccari, A
    Pontalti, R
    Malacarne, C
    Cristoforetti, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) : 117 - 139