Contextual Fraction as a Measure of Contextuality

被引:96
作者
Abramsky, Samson [1 ]
Barbosa, Rui Soares [1 ]
Mansfield, Shane [2 ]
机构
[1] Univ Oxford, Dept Comp Sci, Wolfson Bldg,Parks Rd, Oxford OX1 3QD, England
[2] Univ Edinburgh, Sch Informat, Informat Forum, 10 Crichton St, Edinburgh EH8 9AB, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM NONLOCALITY;
D O I
10.1103/PhysRevLett.119.050504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the contextual fraction as a quantitative measure of contextuality of empirical models, i.e., tables of probabilities of measurement outcomes in an experimental scenario. It provides a general way to compare the degree of contextuality across measurement scenarios; it bears a precise relationship to violations of Bell inequalities; its value, and a witnessing inequality, can be computed using linear programing; it is monotonic with respect to the "free" operations of a resource theory for contextuality; and it measures quantifiable advantages in informatic tasks, such as games and a form of measurement-based quantum computing.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
Abramsky S., 2017, P 42 INT S MATH FDN
[2]   Hardy is (almost) everywhere: Nonlocality without inequalities for almost all entangled multipartite states [J].
Abramsky, Samson ;
Constantin, Carmen M. ;
Ying, Shenggang .
INFORMATION AND COMPUTATION, 2016, 250 :3-14
[3]   A classification of multipartite states by degree of non-locality [J].
Abramsky, Samson ;
Constantin, Carmen .
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (171) :10-25
[4]   Logical Bell inequalities [J].
Abramsky, Samson ;
Hardy, Lucien .
PHYSICAL REVIEW A, 2012, 85 (06)
[5]   The sheaf-theoretic structure of non-locality and contextuality [J].
Abramsky, Samson ;
Brandenburger, Adam .
NEW JOURNAL OF PHYSICS, 2011, 13
[6]   Quantum nonlocality in two three-level systems -: art. no. 052325 [J].
Acín, A ;
Durt, T ;
Gisin, N ;
Latorre, JI .
PHYSICAL REVIEW A, 2002, 65 (05) :523251-523258
[7]  
Amaral B., ARXIV170507911
[8]   Computational Power of Correlations [J].
Anders, Janet ;
Browne, Dan E. .
PHYSICAL REVIEW LETTERS, 2009, 102 (05)
[9]   Fully nonlocal quantum correlations [J].
Aolita, Leandro ;
Gallego, Rodrigo ;
Acin, Antonio ;
Chiuri, Andrea ;
Vallone, Giuseppe ;
Mataloni, Paolo ;
Cabello, Adan .
PHYSICAL REVIEW A, 2012, 85 (03)
[10]   Nonlocal correlations as an information-theoretic resource [J].
Barrett, J ;
Linden, N ;
Massar, S ;
Pironio, S ;
Popescu, S ;
Roberts, D .
PHYSICAL REVIEW A, 2005, 71 (02)