SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION

被引:13
作者
Schiavazzi, Daniele [1 ]
Doostan, Alireza [2 ]
Iaccarino, Gianluca [3 ]
机构
[1] Univ Calif San Diego, Dept Aerosp Engn & Mech, La Jolla, CA 92093 USA
[2] Univ Colorado, Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; multiresolution approximation; compressive sampling; adaptive importance sampling; tree-based orthogonal matching pursuit; uncertain tuned mass damper; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL CHAOS; SIGNAL RECOVERY; APPROXIMATION; BASES; MINIMIZATION; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2014010147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy approximation techniques that require a number of solution realizations smaller than the cardinality of the multiresolution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency of a passive vibration control system operating under uncertainty.
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [41] On the propagation of statistical model parameter uncertainty in CFD calculations
    Barth, Timothy
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2012, 26 (05) : 435 - 457
  • [42] Analysis of parametric uncertainty propagation in detailed combustion chemistry
    Reagan, MT
    Najm, HN
    Ghanem, RG
    Knio, OM
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1501 - 1505
  • [43] Uncertainty propagation using Wiener-Haar expansions
    Le Maître, OP
    Knio, OM
    Najm, HN
    Ghanem, RG
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (01) : 28 - 57
  • [44] FORWARD AND BACKWARD UNCERTAINTY PROPAGATION FOR DISCONTINUOUS SYSTEM RESPONSE USING THE PADE-LEGENDRE METHOD
    Chantrasmi, Tonkid
    Iaccarino, Gianluca
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2012, 2 (02) : 125 - 143
  • [45] Sparse regression using mixed norms
    Kowalski, Matthieu
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) : 303 - 324
  • [46] Irregularly Clipped Sparse Regression Codes
    Li, Wencong
    Liu, Lei
    Kurkoski, Brian M.
    2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [47] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [48] Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification
    Winokur, J.
    Kim, D.
    Bisetti, F.
    Le Maitre, O. P.
    Knio, O. M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (02) : 596 - 623
  • [49] Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification
    J. Winokur
    D. Kim
    F. Bisetti
    O. P. Le Maître
    O. M. Knio
    Journal of Scientific Computing, 2016, 68 : 596 - 623
  • [50] Uncertainty Propagation with Semidefinite Programming
    Choi, Hyungjin
    Seiler, Peter J.
    Dhople, Sairaj V.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 5966 - 5971