SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION

被引:13
作者
Schiavazzi, Daniele [1 ]
Doostan, Alireza [2 ]
Iaccarino, Gianluca [3 ]
机构
[1] Univ Calif San Diego, Dept Aerosp Engn & Mech, La Jolla, CA 92093 USA
[2] Univ Colorado, Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; multiresolution approximation; compressive sampling; adaptive importance sampling; tree-based orthogonal matching pursuit; uncertain tuned mass damper; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL CHAOS; SIGNAL RECOVERY; APPROXIMATION; BASES; MINIMIZATION; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2014010147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy approximation techniques that require a number of solution realizations smaller than the cardinality of the multiresolution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency of a passive vibration control system operating under uncertainty.
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [31] Uncertainty Quantification and Propagation in Computational Materials Science and Simulation-Assisted Materials Design
    Honarmandi, Pejman
    Arroyave, Raymundo
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2020, 9 (01) : 103 - 143
  • [32] Accelerating model evaluations in uncertainty propagation on tensor grids using computational graph transformations
    Wang, Bingran
    Sperry, Mark
    Gandarillas, Victor E.
    Hwang, John T.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 145
  • [33] B-splines on sparse grids for surrogates in uncertainty quantification
    Rehme, Michael F.
    Franzelin, Fabian
    Pflueger, Dirk
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 209
  • [34] Multiaxial fatigue prediction and uncertainty quantification based on back propagation neural network and Gaussian process regression
    Gao, Jingjing
    Wang, Jun
    Xu, Zili
    Wang, Cunjun
    Yan, Song
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 168
  • [35] Multidirectional Gaussian Mixture Models for Nonlinear Uncertainty Propagation
    Vittaldev, V.
    Russell, R. P.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2016, 111 (01): : 83 - 117
  • [36] A Flexible Uncertainty Propagation Framework for General Multiphysics Systems
    Mittal, A.
    Chen, X.
    Tong, A. H.
    Iaccarino, G.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 218 - 243
  • [37] Uncertainty propagation in risk and resilience analysis of hierarchical systems
    Tabandeh, Armin
    Sharma, Neetesh
    Gardoni, Paolo
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 219
  • [38] Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
    Peherstorfer, Benjamin
    Willcox, Karen
    Gunzburger, Max
    SIAM REVIEW, 2018, 60 (03) : 550 - 591
  • [39] Uncertainty propagation in CFD using polynomial chaos decomposition
    Knio, O. M.
    Le Maitre, O. P.
    FLUID DYNAMICS RESEARCH, 2006, 38 (09) : 616 - 640
  • [40] Uncertainty propagation in orbital mechanics via tensor decomposition
    Sun, Yifei
    Kumar, Mrinal
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2016, 124 (03) : 269 - 294