SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION

被引:13
作者
Schiavazzi, Daniele [1 ]
Doostan, Alireza [2 ]
Iaccarino, Gianluca [3 ]
机构
[1] Univ Calif San Diego, Dept Aerosp Engn & Mech, La Jolla, CA 92093 USA
[2] Univ Colorado, Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; multiresolution approximation; compressive sampling; adaptive importance sampling; tree-based orthogonal matching pursuit; uncertain tuned mass damper; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL CHAOS; SIGNAL RECOVERY; APPROXIMATION; BASES; MINIMIZATION; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2014010147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy approximation techniques that require a number of solution realizations smaller than the cardinality of the multiresolution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency of a passive vibration control system operating under uncertainty.
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [21] Sparse image representation through multiple multiresolution analysis
    Cotronei, Mariantonia
    Ruweler, Dorte
    Sauer, Tomas
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 500
  • [22] Sensitivity equation method for the Navier-Stokes equations applied to uncertainty propagation
    Fiorini, Camilla
    Despres, Bruno
    Puscas, Maria Adela
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (01) : 71 - 92
  • [23] Uncertainty quantification analysis with sparse polynomial chaos method
    Chen J.
    Zhang C.
    Liu X.
    Zhao H.
    Hu X.
    Wu X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2020, 41 (03):
  • [24] Sparse and nonnegative sparse D-MORPH regression
    Li, Genyuan
    Rey-de-Castro, Roberto
    Xing, Xi
    Rabitz, Herschel
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (08) : 1885 - 1914
  • [25] An adaptive sparse grid rational Arnoldi method for uncertainty quantification of dynamical systems in the frequency domain
    Romer, Ulrich
    Bollhoefer, Matthias
    Sreekumar, Harikrishnan
    Blech, Christopher
    Christine Langer, Sabine
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (20) : 5487 - 5511
  • [26] Propagation of Parameter Uncertainty Based on Evidence Theory
    Hu, Junming
    Wei, Fayuan
    Ge, Renwei
    Liang, Tianxi
    2011 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (ICQR2MSE), 2011, : 915 - 919
  • [27] Pragmatic aspects of uncertainty propagation: A conceptual review
    Thacker, W. Carlisle
    Iskandarani, Mohamed
    Goncalves, Rafael C.
    Srinivasan, Ashwanch
    Knio, Omar M.
    OCEAN MODELLING, 2015, 95 : 25 - 36
  • [28] Efficient uncertainty propagation for network multiphysics systems
    Constantine, P. G.
    Phipps, E. T.
    Wildey, T. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (03) : 183 - 202
  • [29] PIV uncertainty propagation
    Sciacchitano, Andrea
    Wieneke, Bernhard
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (08)
  • [30] Sliced-Inverse-Regression-Aided Rotated Compressive Sensing Method for Uncertainty Quantification
    Yang, Xiu
    Li, Weixuan
    Tartakovsky, Alexandre
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1532 - 1554