SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION

被引:13
|
作者
Schiavazzi, Daniele [1 ]
Doostan, Alireza [2 ]
Iaccarino, Gianluca [3 ]
机构
[1] Univ Calif San Diego, Dept Aerosp Engn & Mech, La Jolla, CA 92093 USA
[2] Univ Colorado, Aerosp Engn Sci Dept, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
uncertainty quantification; multiresolution approximation; compressive sampling; adaptive importance sampling; tree-based orthogonal matching pursuit; uncertain tuned mass damper; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; POLYNOMIAL CHAOS; SIGNAL RECOVERY; APPROXIMATION; BASES; MINIMIZATION; SYSTEMS;
D O I
10.1615/Int.J.UncertaintyQuantification.2014010147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work proposes a novel nonintrusive, i.e., sampling-based, framework for approximating stochastic solutions of interest admitting sparse multiresolution expansions. The coefficients of such expansions are computed via greedy approximation techniques that require a number of solution realizations smaller than the cardinality of the multiresolution basis. The effect of various random sampling strategies is investigated. The proposed methodology is verified on a number of benchmark problems involving nonsmooth stochastic responses, and is applied to quantifying the efficiency of a passive vibration control system operating under uncertainty.
引用
收藏
页码:303 / 331
页数:29
相关论文
共 50 条
  • [1] A sparse multiresolution stochastic approximation for uncertainty quantification
    Schiavazzi, D.
    Doostan, A.
    Iaccarino, G.
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 295 - +
  • [2] Uncertainty Propagation Analysis of T/R Modules
    Wang, Z. H.
    Jiang, C.
    Ruan, X. X.
    Zhang, Y. Q.
    Huang, Z. L.
    Wang, C. S.
    Fang, T.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2019, 16 (07)
  • [3] Uncertainty propagation analysis by an extended sparse grid technique
    Jia, X. Y.
    Jiang, C.
    Fu, C. M.
    Ni, B. Y.
    Wang, C. S.
    Ping, M. H.
    FRONTIERS OF MECHANICAL ENGINEERING, 2019, 14 (01) : 33 - 46
  • [4] A Sparse Stochastic Collocation Technique for High-Frequency Wave Propagation with Uncertainty
    Malenova, G.
    Motamed, M.
    Runborg, O.
    Tempone, R.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1084 - 1110
  • [5] Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids
    Lin, G.
    Tartakovsky, A. M.
    Tartakovsky, D. M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 6995 - 7012
  • [6] A review of uncertainty propagation in orbital mechanics
    Luo, Ya-zhong
    Yang, Zhen
    PROGRESS IN AEROSPACE SCIENCES, 2017, 89 : 23 - 39
  • [7] A General Framework of Rotational Sparse Approximation in Uncertainty Quantification
    Hu, Mengqi
    Lou, Yifei
    Yang, Xiu
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04): : 1410 - 1434
  • [8] Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of High-Speed Circuits
    Ahadi, Majid
    Roy, Sourajeet
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (10) : 1640 - 1652
  • [9] A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling
    Schiavazzi, D. E.
    Doostan, A.
    Iaccarino, G.
    Marsden, A. L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 314 : 196 - 221
  • [10] Uncertainty propagation of p-boxes using sparse polynomial chaos expansions
    Schobi, Roland
    Sudret, Bruno
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 339 : 307 - 327