Fractional Reverse Coposn's Inequalities via Conformable Calculus on Time Scales

被引:18
作者
Zakarya, Mohammed [1 ,2 ]
Altanji, Mohamed [1 ]
AlNemer, Ghada [3 ]
Abd El-Hamid, Hoda A. [4 ]
Cesarano, Clemente [5 ]
Rezk, Haytham M. [6 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[2] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
[3] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 105862, Riyadh 11656, Saudi Arabia
[4] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf 62511, Egypt
[5] Univ Telemat Int Uninettuno, Sect Math, I-00186 Rome, Italy
[6] Al Azhar Univ, Fac Sci, Dept Math, Nasr City 11884, Egypt
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 04期
关键词
Copson’ s inequality; Hö lder’ time scales; conformable fractional calculus; DYNAMIC INEQUALITIES; HARDY-TYPE; HILBERT;
D O I
10.3390/sym13040542
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper provides novel generalizations by considering the generalized conformable fractional integrals for reverse Copson's type inequalities on time scales. The main results will be proved using a general algebraic inequality, chain rule, Holder's inequality, and integration by parts on fractional time scales. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. In addition, when alpha = 1, we obtain some well-known time scale inequalities due to Hardy, Copson, Bennett, and Leindler inequalities.
引用
收藏
页数:16
相关论文
共 34 条
  • [1] Dynamic Inequalities in Quotients with General Kernels and Measures
    Abd El-Hamid, H. A.
    Rezk, H. M.
    Ahmed, A. M.
    AlNemer, Ghada
    Zakarya, M.
    El Saify, H. A.
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [2] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [3] Some Dynamic Inequalities of Hilbert's Type
    Ahmed, A. M.
    AlNemer, Ghada
    Zakarya, M.
    Rezk, H. M.
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [4] Ahmed A.M, 2020, J DCDIS A
  • [5] Some Dynamic Hilbert-Type Inequalities on Time Scales
    AlNemer, Ghada
    Zakarya, Mohammed
    Abd El-Hamid, Hoda A.
    Agarwal, Praveen
    Rezk, Haytham M.
    [J]. SYMMETRY-BASEL, 2020, 12 (09):
  • [6] Dynamic Hardy-type inequalities with non-conjugate parameters
    AlNemer, Ghada
    Zakarya, M.
    Abd El-Hamid, H. A.
    Kenawy, M. R.
    Rezk, H. M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 4523 - 4532
  • [7] A conformable fractional calculus on arbitrary time scales
    Benkhettou, Nadia
    Hassani, Salima
    Torres, Delfim F. M.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 93 - 98
  • [8] SOME ELEMENTARY INEQUALITIES .2.
    BENNETT, G
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (156) : 385 - 400
  • [9] SOME ELEMENTARY INEQUALITIES
    BENNETT, G
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (152) : 401 - 425
  • [10] The best constant in a fractional Hardy inequality
    Bogdan, Krzysztof
    Dyda, Bartlomiej
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 629 - 638