Evaluation of high-volume fly ash (HVFA) concrete modified by metakaolin: Technical, economic and environmental analysis

被引:35
作者
Nie, Yanfeng [1 ]
Shi, Jinyan [2 ]
He, Zhihai [3 ]
Zhang, Baifa [4 ]
Peng, Yiming [5 ]
Lu, Jingzhou [1 ]
机构
[1] Yantai Univ, Sch Civil Engn, Yantai 264005, Peoples R China
[2] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[3] Shaoxing Univ, Coll Civil Engn, Shaoxing 312000, Peoples R China
[4] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Guangdong, Peoples R China
[5] Cent South Univ, Sch Civil Engn, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
Fly ash; HVFA concrete; Metakaolin; Nanoindentation; Drying shrinkage; CEMENT; STRENGTH; HYDRATION; IMPACTS; MORTAR;
D O I
10.1016/j.powtec.2022.117121
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Incorporating high-volume fly ash (HVFA) to concrete is one of the effective means to reduce the carbon footprint of buildings, but it also leads to problems such as the slow performance development of concrete. In this study, metakaolin (MK) as a calcined clay mineral is used to modify HVFA concrete, and the multi-scale characteristics of concrete are studied. The results show that compared with plain concrete, the mechanical properties and the volume fraction of hydration products of HVFA concrete are reduced, and the microstructure becomes loose. When 20% of MK is used to replace FA, the 90-d compressive strength of HVFA concrete are similar to those of plain concrete, and the drying shrinkage and porosity are relatively lowest, and the microstructure is relatively dense. The performance enhancement of MK-modified HVFA concrete is attributed to the increase of C-S-H phase and the decrease of the content of pore phase. Meanwhile, incorporating an appropriate amount of MK can reduce the carbon footprint and cost of HVFA.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [42] Strength characteristics of polymer modified high volume fly ash concrete
    Varun, B. K.
    Kumar, C. P. Anila
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 285 - 288
  • [43] Implementation of high-volume fly ash concrete in India for sustainable development
    Bilodeau, A.
    Sivasundaram, V.
    Bouzoubaa, N.
    Fournier, B.
    Nkinamubanzi, P-C.
    Proceedings of the 6th International Symposium on Cement & Concrete and CANMET/ACI International Symposium on Concrete Technology for Sustainable Development, Vols 1 and 2, 2006, : 807 - 814
  • [44] Influence of nanomaterial on high-volume fly ash concrete: a statistical approach
    Avuthu Narender Reddy
    P. Narashima Reddy
    Bode Venkata Kavyateja
    G. Gautham Kishore Reddy
    Innovative Infrastructure Solutions, 2020, 5
  • [45] Compressive strength and hydration characteristics of high-volume fly ash concrete prepared from fly ash
    Sun, Jinfeng
    Shen, Xiaodong
    Tan, Gang
    Tanner, Jennifer E.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (02) : 565 - 580
  • [46] Mechanical and durability studies on high-volume fly-ash concrete
    Kumar, Manish
    Sinha, Anand Kumar
    Kujur, Jitu
    STRUCTURAL CONCRETE, 2020, 22 (S1) : E1036 - E1049
  • [47] Performance characteristics of high-volume Class F fly ash concrete
    Siddique, R
    CEMENT AND CONCRETE RESEARCH, 2004, 34 (03) : 487 - 493
  • [48] Compressive strength and hydration characteristics of high-volume fly ash concrete prepared from fly ash
    Jinfeng Sun
    Xiaodong Shen
    Gang Tan
    Jennifer E. Tanner
    Journal of Thermal Analysis and Calorimetry, 2019, 136 : 565 - 580
  • [49] Synergetic effect of biomass fly ash on improvement of high-volume coal fly ash concrete properties
    Teixeira, E. R.
    Camoes, A.
    Branco, F. G.
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 314
  • [50] Rheology of High-Volume Fly Ash Self-Compacting Recycled Aggregate Concrete
    Singh, Ran Bir
    Singh, Bhupinder
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (10)