Evaluation of high-volume fly ash (HVFA) concrete modified by metakaolin: Technical, economic and environmental analysis

被引:35
作者
Nie, Yanfeng [1 ]
Shi, Jinyan [2 ]
He, Zhihai [3 ]
Zhang, Baifa [4 ]
Peng, Yiming [5 ]
Lu, Jingzhou [1 ]
机构
[1] Yantai Univ, Sch Civil Engn, Yantai 264005, Peoples R China
[2] Southeast Univ, Sch Mat Sci & Engn, Nanjing 211189, Peoples R China
[3] Shaoxing Univ, Coll Civil Engn, Shaoxing 312000, Peoples R China
[4] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Guangdong, Peoples R China
[5] Cent South Univ, Sch Civil Engn, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
Fly ash; HVFA concrete; Metakaolin; Nanoindentation; Drying shrinkage; CEMENT; STRENGTH; HYDRATION; IMPACTS; MORTAR;
D O I
10.1016/j.powtec.2022.117121
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Incorporating high-volume fly ash (HVFA) to concrete is one of the effective means to reduce the carbon footprint of buildings, but it also leads to problems such as the slow performance development of concrete. In this study, metakaolin (MK) as a calcined clay mineral is used to modify HVFA concrete, and the multi-scale characteristics of concrete are studied. The results show that compared with plain concrete, the mechanical properties and the volume fraction of hydration products of HVFA concrete are reduced, and the microstructure becomes loose. When 20% of MK is used to replace FA, the 90-d compressive strength of HVFA concrete are similar to those of plain concrete, and the drying shrinkage and porosity are relatively lowest, and the microstructure is relatively dense. The performance enhancement of MK-modified HVFA concrete is attributed to the increase of C-S-H phase and the decrease of the content of pore phase. Meanwhile, incorporating an appropriate amount of MK can reduce the carbon footprint and cost of HVFA.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Influence of nanomaterial on high-volume fly ash concrete: a statistical approach
    Reddy, Avuthu Narender
    Reddy, P. Narashima
    Kavyateja, Bode Venkata
    Reddy, G. Gautham Kishore
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2020, 5 (03)
  • [22] Modification of high-volume fly ash cement with metakaolin for its utilization in cemented paste backfill: The effects of metakaolin content and particle size
    Sun, Xiaogang
    Zhao, Yingliang
    Tian, Yansheng
    Wu, Pinqi
    Guo, Zhenbang
    Qiu, Jingping
    Jun Xing
    Gu Xiaowei
    POWDER TECHNOLOGY, 2021, 393 : 539 - 549
  • [23] Hydration of high-volume fly ash cement pastes
    Zhang, YM
    Sun, W
    Yan, HD
    CEMENT & CONCRETE COMPOSITES, 2000, 22 (06) : 445 - 452
  • [24] Tensile properties of high volume fly-ash (HVFA) concrete with limestone aggregate
    Yoshitake, Isamu
    Komure, Hiroki
    Nassif, Ayman Y.
    Fukumoto, Sunao
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 49 : 101 - 109
  • [25] Dynamic compressive properties of high volume fly ash (HVFA) concrete with nano silica
    Chen, Wensu
    Shaikh, Faiz
    Li, Zhixing
    Ran, Wenlong
    Hao, Hong
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 301
  • [26] Sulfuric acid resistance of high-volume fly ash concrete
    Aydin, Serdar
    Yazici, Halit
    Yigiter, Huseyin
    Baradan, Bulent
    BUILDING AND ENVIRONMENT, 2007, 42 (02) : 717 - 721
  • [27] A model for predicting carbonation of high-volume fly ash concrete
    Jiang, LH
    Lin, BY
    Cai, YB
    CEMENT AND CONCRETE RESEARCH, 2000, 30 (05) : 699 - 702
  • [28] Performance of high-volume fly ash concrete in hot weather
    Mehta, RK
    INNOVATIONS IN DESIGN WITH EMPHASIS ON SEISMIC, WIND, AND ENVIRONMENTAL LOADING: QUALITY CONTROL AND INNOVATIONS IN MATERIALS/HOT-WEATHER CONCRETING, 2002, 209 : 47 - 52
  • [29] Evaluation of sustainable high-volume fly ash concretes
    Duran-Herrera, A.
    Juarez, C. A.
    Valdez, P.
    Bentz, D. P.
    CEMENT & CONCRETE COMPOSITES, 2011, 33 (01) : 39 - 45
  • [30] Long term creep and shrinkage of nano silica modified high volume fly ash concrete
    Herath, Charith
    Gunasekara, Chamila
    Law, David W.
    Setunge, Sujeeva
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2022, 11 (03) : 185 - 198