A fast algorithm for computing minimum 3-way and 4-way cuts

被引:17
|
作者
Nagamochi, H [1 ]
Ibaraki, T
机构
[1] Toyohashi Univ Technol, Dept Informat & Comp Sci, Tempaku Ku, Toyohashi, Aichi 4418580, Japan
[2] Kyoto Univ, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
minimum cuts; graphs; hypergraphs; k-way cuts polynomial algorithm; submodular function;
D O I
10.1007/PL00011383
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For an edge-weighted graph G with n vertices and rn edges, we present a new deterministic algorithm for computing a minimum k-way cut for k = 3, 4. The algorithm runs in O(n(k-1)F(n, m)) = O(mn(k) log(n(2)/m)) time and O(n(2)) space for k = 3, 4, where F(n, m) denotes the time bound required to solve the maximum flow problem in G. The bound for k = 3 matches the current best deterministic bound (O) over tilde(mn(3)) for weighted graphs, but improves the bound (O) over tilde(mn(3)) to O(n(2) F(n, m)) = O(min{mn(8/3), m(3/2)n(2)}) for unweighted graphs. The bound (O) over tilde(mn(4)) for k = 4 improves the previous best randomized bound (O) over tilde(n(6)) (for m = o(n(2))). The algorithm is then generalized to the problem of finding a minimum 3-way cut in a symmetric submodular system.
引用
收藏
页码:507 / 520
页数:14
相关论文
共 50 条
  • [1] A fast algorithm for computing minimum 3-way and 4-way cuts
    Nagamochi, H
    Ibaraki, T
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 1999, 1610 : 377 - 390
  • [2] A fast algorithm for computing minimum 3-way and 4-way cuts
    Hiroshi Nagamochi
    Toshihide Ibaraki
    Mathematical Programming, 2000, 88 : 507 - 520
  • [3] Finding minimum 3-way cuts in hypergraphs
    Xiao, Mingyu
    INFORMATION PROCESSING LETTERS, 2010, 110 (14-15) : 554 - 558
  • [4] Finding minimum 3-way cuts in hypergraphs
    Xiao, Mingyu
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 : 270 - 281
  • [5] 3-WAY AND 4-WAY RECURRENT SELECTION IN PLANT-BREEDING
    GALLAIS, A
    PLANT BREEDING, 1991, 107 (04) : 265 - 274
  • [6] Approximating the Minimum k-way Cut in a Graph via Minimum 3-way Cuts
    Liang Zhao
    Hiroshi Nagamochi
    Toshihide Ibaraki
    Journal of Combinatorial Optimization, 2001, 5 : 397 - 410
  • [7] Approximating the minimum k-way cut in a graph via minimum 3-way cuts
    Zhao, L
    Nagamochi, H
    Ibaraki, T
    ALGORITHMS AND COMPUTATIONS, 2000, 1741 : 373 - 382
  • [8] Approximating the minimum k-way cut in a graph via minimum 3-way cuts
    Zhao, L
    Nagamochi, H
    Ibaraki, T
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (04) : 397 - 410
  • [9] Fast randomized algorithms for computing minimum {3,4,5,6}-way cuts
    Levine, MS
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 735 - 742
  • [10] NOTE ON THE INFLUENCE OF 2-WAY, 3-WAY, AND 4-WAY CROSSES ON GROWTH FOR BROILER PRODUCTION
    VERMA, SK
    CHOUDHARY, RP
    INDIAN JOURNAL OF ANIMAL SCIENCES, 1980, 50 (02): : 212 - 213