Adjuvant effect of the novel TLR1/TLR2 agonist Diprovocim synergizes with anti-PD-L1 to eliminate melanoma in mice

被引:95
作者
Wang, Ying [1 ]
Su, Lijing [1 ]
Morin, Matthew D. [2 ]
Jones, Brian T. [2 ]
Mifune, Yuto [2 ]
Shi, Hexin [1 ]
Wang, Kuan-wen [1 ]
Zhan, Xiaoming [1 ]
Liu, Aijie [1 ]
Wang, Jianhui [1 ]
Li, Xiaohong [1 ]
Tang, Miao [1 ]
Ludwig, Sara [1 ]
Hildebrand, Sara [1 ]
Zhou, Kejin [3 ,4 ]
Siegwart, Daniel J. [3 ,4 ]
Moresco, Eva Marie Y. [1 ]
Zhang, Hong [1 ]
Boger, Dale L. [2 ]
Beutler, Bruce [1 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Ctr Genet Host Def, Dallas, TX 75390 USA
[2] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
关键词
TLR1/TLR2; agonist; melanoma; PD-L1; antibody; cancer immunotherapy; INNATE IMMUNITY; B7; FAMILY; T-CELLS; RECEPTOR; RESISTANCE; BLOCKADE; IMMUNOGENICITY; MEMBER;
D O I
10.1073/pnas.1809232115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Successful cancer immunotherapy entails activation of innate immune receptors to promote dendritic cell (DC) maturation, antigen presentation, up-regulation of costimulatory molecules, and cytokine secretion, leading to activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs). Here we screened a synthetic library of 100,000 compounds for innate immune activators using TNF production by THP-1 cells as a readout. We identified and optimized a potent human and mouse Toll-like receptor (TLR)1/TLR2 agonist, Diprovocim, which exhibited an EC50 of 110 pM in human THP-1 cells and 1.3 nM in primary mouse peritoneal macrophages. In mice, Diprovocimadjuvanted ovalbumin immunization promoted antigen-specific humoral and CTL responses and synergized with anti-PD-L1 treatment to inhibit tumor growth, generating long-term antitumor memory, curing or prolonging survival of mice engrafted with the murine melanoma B16-OVA. Diprovocim induced greater frequencies of tumor infiltrating leukocytes than alum, of which CD8 T cells were necessary for the antitumor effect of immunization plus anti PD-L1 treatment.
引用
收藏
页码:E8698 / E8706
页数:9
相关论文
共 36 条
[31]   Robust Antitumor Effects of Combined Anti-CD4-Depleting Antibody and Anti-PD-1/PD-L1 Immune Checkpoint Antibody Treatment in Mice [J].
Ueha, Satoshi ;
Yokochi, Shoji ;
Ishiwata, Yoshiro ;
Ogiwara, Haru ;
Chand, Krishant ;
Nakajima, Takuya ;
Hachiga, Kosuke ;
Shichino, Shigeyuki ;
Terashima, Yuya ;
Toda, Etsuko ;
Shand, Francis H. W. ;
Kakimi, Kazuhiro ;
Ito, Satoru ;
Matsushima, Kouji .
CANCER IMMUNOLOGY RESEARCH, 2015, 3 (06) :631-640
[32]   cGAS is essential for the antitumor effect of immune checkpoint blockade [J].
Wang, Hua ;
Hu, Shuiqing ;
Chen, Xiang ;
Shi, Heping ;
Chen, Chuo ;
Sun, Lijun ;
Chen, Zhijian J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (07) :1637-1642
[33]   Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells [J].
Wang, Shu ;
Campos, Jose ;
Gallotta, Marilena ;
Gong, Mei ;
Crain, Chad ;
Naik, Edwina ;
Coffman, Robert L. ;
Guiducci, Cristiana .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (46) :E7240-E7249
[34]   TLR2-Dependent Induction of IL-10 and Foxp3+CD25+CD4+ Regulatory T Cells Prevents Effective Anti-Tumor Immunity Induced by Pam2 Lipopeptides In Vivo [J].
Yamazaki, Sayuri ;
Okada, Kohei ;
Maruyama, Akira ;
Matsumoto, Misako ;
Yagita, Hideo ;
Seya, Tsukasa .
PLOS ONE, 2011, 6 (04)
[35]   TLR1/TLR2 Agonist Induces Tumor Regression by Reciprocal Modulation of Effector and Regulatory T Cells [J].
Zhang, Yi ;
Luo, Feifei ;
Cai, Yuchan ;
Liu, Nan ;
Wang, Luman ;
Xu, Damo ;
Chu, Yiwei .
JOURNAL OF IMMUNOLOGY, 2011, 186 (04) :1963-1969
[36]   PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations [J].
Zou, Weiping ;
Wolchok, Jedd D. ;
Chen, Lieping .
SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (328)