EXACT ASYMPTOTIC FORMULAS FOR THE HEAT KERNELS OF SPACE AND TIME-FRACTIONAL EQUATIONS

被引:2
作者
Deng, Chang-Song [1 ]
Schilling, Rene L. [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Tech Univ Dresden, Fak Math, Inst Math Stochast, D-01062 Dresden, Germany
基金
中国国家自然科学基金;
关键词
heat kernel; asymptotic formula; space-fractional equation; time-fractional equation; subordinator; inverse subordinator; ANOMALOUS DIFFUSION; BROWNIAN-MOTION; RANDOM-WALKS;
D O I
10.1515/fca-2019-0052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to study the asymptotic behaviour of the fundamental solutions (heat kernels) of non-local (partial and pseudo differential) equations with fractional operators in time and space. In particular, we obtain exact asymptotic formulas for the heat kernels of time-changed Brownian motions and Cauchy processes. As an application, we obtain exact asymptotic formulas for the fundamental solutions to the n-dimensional fractional heat equations in both time and space partial derivative(beta)/partial derivative t(beta) u(t, x) = -(-Delta(x))(gamma)u(t, x), beta, gamma is an element of(0, 1).
引用
收藏
页码:968 / 989
页数:22
相关论文
共 50 条
  • [1] Exact Asymptotic Formulas for the Heat Kernels of Space and Time-Fractional Equations
    Chang-Song Deng
    René L. Schilling
    Fractional Calculus and Applied Analysis, 2019, 22 : 968 - 989
  • [2] On the invariant solutions of space/time-fractional diffusion equations
    Bahrami, F.
    Najafi, R.
    Hashemi, M. S.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (12) : 1571 - 1579
  • [3] Time-fractional heat equations and negative absolute temperatures
    Zhang, Wei
    Cai, Xing
    Holm, Sverre
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (01) : 164 - 171
  • [4] Tychonoff Solutions of the Time-Fractional Heat Equation
    Ascione, Giacomo
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [5] On Time-Fractional Diffusion Equations with Space-Dependent Variable Order
    Kian, Yavar
    Soccorsi, Eric
    Yamamoto, Masahiro
    ANNALES HENRI POINCARE, 2018, 19 (12): : 3855 - 3881
  • [6] Heat kernel estimates for time fractional equations
    Chen, Zhen-Qing
    Kim, Panki
    Kumagai, Takashi
    Wang, Jian
    FORUM MATHEMATICUM, 2018, 30 (05) : 1163 - 1192
  • [7] A stochastic method for solving time-fractional differential equations
    Guidotti, Nicolas L.
    Acebron, Juan A.
    Monteiro, Jose
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 240 - 253
  • [8] Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation
    Metzler, R
    Nonnenmacher, TF
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 67 - 90
  • [9] Nonoverlapping Schwarz Waveform Relaxation Algorithm for a Class of Time-Fractional Heat Equations
    Wu, Shu-Lin
    Wu, Guo-Cheng
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 231 - 240
  • [10] ON NONAUTONOMOUS EVOLUTION EQUATIONS WITH A TIME-FRACTIONAL ATTENUATION
    Mahdi, Achache
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (04) : 385 - 406