Parseval Frames and the Discrete Walsh Transform

被引:1
作者
Farkov, Yu. A. [1 ]
Robakidze, M. G. [1 ]
机构
[1] Russian Presidential Acad, Natl Econ & Publ Adm, Moscow 119571, Russia
关键词
Walsh functions; discrete transforms; wavelets; frames; periodic sequences; WAVELETS;
D O I
10.1134/S0001434619090141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that N = 2(n) and N1 = 2(n-1), where n is a natural number. Denote by C-N the space of complex N-periodic sequences with standard inner product. For any N-dimensional complex nonzero vector (b(0), b(1),..., b(N-1)) satisfying the condition |bl|2+|bl+N1|22N2,l=0,1,...,N11 we find sequences u(0), u(1),...., u(r) is an element of C-N such that the system of their binary shifts is a Parseval frame for C-N. It is noted that the vector (b(0), b(1),..., b(N-1)) specifies the discrete Walsh transform of the sequence u(0), and the choice of this vector makes it possible to adapt the proposed construction to the signal being processed according to the entropy, mean-square, or some other criterion.
引用
收藏
页码:446 / 456
页数:11
相关论文
共 27 条
[1]  
Allen Broughton S., 2018, Discrete Fourier analysis and wavelets: Applications to signal and image processing, V2nd
[2]  
[Anonymous], WALSH SERIES TRANSFO
[3]  
[Anonymous], 2015, EFSA J
[4]  
[Беспалов Михаил Сергеевич Bespalov M.S.], 2010, [Проблемы передачи информации, Problemy Peredaсhi Informatsii, Problemy peredachi informatsii], V46, P60
[5]   Equal-norm tight frames with erasures [J].
Casazza, PG ;
Kovacevic, J .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :387-430
[6]  
Chrestenson O, 2016, INRO FRAMES RIESZ BA
[7]  
Daubechies I., 2001, Ten lectures on wavelets.
[8]   Examples of frames on the cantor dyadic group [J].
Yuri A. Farkov .
Journal of Mathematical Sciences, 2012, 187 (1) :22-34
[9]  
Farkov Y. A., 2015, POINCARE J ANAL APPL, V2, P13, DOI DOI 10.46753/PJAA.2015.V02I02.002
[10]  
Farkov Y.A., 2011, IZV VYSS UCEBN ZAVED, V7, p[57, 47]