Detection and Classification of Current Interruptions and Transientsby Using Wavelet Transform and Neural Network

被引:0
作者
Jain, Harshit [1 ]
Gawre, Suresh Kumar [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Elect Engn, Bhopal 462003, Madhya Pradesh, India
来源
2016 INTERNATIONAL CONFERENCE ON ELECTRICAL POWER AND ENERGY SYSTEMS (ICEPES) | 2016年
关键词
Wavelet Transform; ANN; Transients; Interruptions; Detection; Classification; MFFN; PQ;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The worldwide increasing applications of nonlinear loads, mostly consisting of power electronics devices, have made the power quality problems an important concern than ever before for utilities and consumers. Therefore, detection and classification of Power Quality disturbances is highly desirable. Most power quality disturbances are non-stationary and transitory and their detection and classification have proved to be much needed. Hence there is a requirement of advanced tools and techniques for the analysis of Power Qualitydisturbances. In this work detection and classification of various types of transients and interruptions, caused due to severe fault and reclosing of circuit breaker, is done by using Discrete Wavelet Transform and two-layer feed forward neural network. This work presents new approach aimed atautomating the analysis of power quality disturbancesincluding transients, interruption and normal waveform. The disturbance current waveform can be obtained from the disturbance generation model. The Discrete Wavelet Transform is chosen for feature extraction. Feature extraction outputs are the coefficients (detailed and approximate) of Discrete Wavelet Transform represents the power quality disturbance signal at the different levels in time and frequency domain.
引用
收藏
页码:462 / 468
页数:7
相关论文
共 50 条
  • [21] Islanding detection based on wavelet transform and neural network
    Xie, D. (XDY@tlu.edu.cn), 1600, Chinese Society for Electrical Engineering (34): : 537 - 544
  • [22] Automatic Epileptic EEG Detection Using Wavelet Transform and Probabilistic Neural Network
    Guo, Ling
    Rivero, Daniel
    Munteanu, Cristian R.
    Pazos, Alejandro
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III, 2010, : 354 - 357
  • [23] EEG Signal Classification using Principal Component Analysis and Wavelet Transform with Neural Network
    Lekshmi, S. S.
    Selvam, V.
    Rajasekaran, M. Pallikonda
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,
  • [24] Classification of biomedical signals using a Haar 4 wavelet transform and a Hamming neural network
    Arevalo Acosta, Orlando Jose
    Santos Penas, Matilde
    NATURE INSPIRED PROBLEM-SOLVING METHODS IN KNOWLEDGE ENGINEERING, PT 2, PROCEEDINGS, 2007, 4528 : 637 - +
  • [25] DSP-based arrhythmia classification using wavelet transform and probabilistic neural network
    Antonio Gutierrez-Gnecchi, Jose
    Morfin-Magana, Rodrigo
    Lorias-Espinoza, Daniel
    del Carmen Tellez-Anguiano, Adriana
    Reyes-Archundia, Enrique
    Mendez-Patino, Arturo
    Castaneda-Miranda, Rodrigo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 32 : 44 - 56
  • [26] Image Retrieval Based on Wavelet Transform and Neural Network Classification
    Gonzalez-Garcia, A. C.
    Sossa-Azuela, J. H.
    Felipe-Riveron, E. M.
    Pogrebnyak, O.
    COMPUTACION Y SISTEMAS, 2007, 11 (02): : 143 - 156
  • [27] ECG Signal Feature Extraction and Classification using Harr Wavelet Transform and Neural Network
    Muthuvel, K.
    Suresh, L. Padma
    Veni, S. H. Krishna
    Kannan, K. Bharathi
    2014 IEEE INTERNATIONAL CONFERENCE ON CIRCUIT, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2014), 2014, : 1396 - 1399
  • [28] Detection and classification of power quality disturbances using parallel neural networks based on discrete wavelet transform
    Garousi, Maryam Rahmati
    Shakarami, Mahmoud Reza
    Namdari, Farhad
    JOURNAL OF ELECTRICAL SYSTEMS, 2016, 12 (01) : 158 - 173
  • [29] Power System Fault Detection and Classification Using Wavelet Transform and Artificial Neural Networks
    Malla, Paul
    Coburn, Will
    Keegan, Kevin
    Yu, Xiao-Hua
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 : 266 - 272
  • [30] Structural damage detection by wavelet transform and probabilistic neural network
    Yan, GR
    Duan, ZD
    Ou, JP
    SMART STRUCTURES AND MATERIALS 2005: SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE, PTS 1 AND 2, 2005, 5765 : 892 - 900