A predenitrification system consisting of an ultracompact biofilm reactor (UCBR) and a packed bed column was used for removing nitrogen from synthetically simulated wastewater. The UCBR column was maintained under aerobic conditions to favor nitrification process, while the packed bed column was operated under an anoxic environment for denitrification process. A peristaltic pump was used to recycle fluid between the anoxic-packed bed and aerobic-UCBR columns to facilitate nitrogen removal. Five recycle ratios (R) were investigated, namely, 3, 4, 5, 6, and 10. The highest average total nitrogen (TN) removal rate was achieved at R = 4. The NH4+-N, TN, and chemical oxygen demand (COD) removal rates at this R were 0.56+/-0.05kg NH4+-N/m(3)/day, 0.39+/-0.09 kg TN/m(3)/day, and 1.83+/-0.18 kg COD/m(3)/day, respectively. It was noted that poor nitrification in the UCBR was accompanied by a corresponding reduction in overall TN removal efficiency. This observation suggested that nitrification process was the limiting step for TN removal in this setup. Thus, the performance of this predenitrification system could be enhanced by optimizing the performance of the nitrification process.