On the multi-component NLS type systems and their gauge equivalent: Examples and reductions

被引:0
作者
Gerdjikov, VS [1 ]
Grahovski, GG [1 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
来源
GLOBAL ANALYSIS AND APPLIED MATHEMATICS | 2004年 / 729卷
关键词
Lax representation; Lie algebras; reductions of soliton equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some recent results concerning the multi-component Nonlinear Schrodinger (MNLS) type systems and their gauge equivalent are presented. On the example of MNLS system related to the so(5)-algebra the derivation of the corresponding generating (recursion) operator is given using a gauge covariant approach. A nontrivial reduction of the so(5) MNLS model with a compatible dynamics is also reported.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 15 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
FADDEEV LD, 1997, HAMILTONIAN APPROACH
[3]  
GELFAND IM, 1976, FUNKT ANAL PRIL, V10, P13, DOI 10.1007/BF01076025
[4]   GAUGE COVARIANT THEORY OF THE GENERATING OPERATOR .1. [J].
GERDJIKOV, VS ;
YANOVSKI, AB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (04) :549-568
[5]   On N-wave type systems and their gauge equivalent [J].
Gerdjikov, VS ;
Grahovski, GG ;
Kostov, NA .
EUROPEAN PHYSICAL JOURNAL B, 2002, 29 (02) :243-248
[6]   GAUGE COVARIANT FORMULATION OF THE GENERATING OPERATOR .2. SYSTEMS ON HOMOGENOUS SPACES [J].
GERDJIKOV, VS ;
YANOVSKI, AB .
PHYSICS LETTERS A, 1985, 110 (02) :53-58
[7]   N-wave interactions related to simple Lie algebras.: Z2-reductions and soliton solutions [J].
Gerdjikov, VS ;
Grahovski, GG ;
Ivanov, RI ;
Kostov, NA .
INVERSE PROBLEMS, 2001, 17 (04) :999-1015
[8]   Reductions of N-wave interactions related to low-rank simple Lie algebras:: I.: Z2-reductions [J].
Gerdjikov, VS ;
Grahovski, GG ;
Kostov, NA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (44) :9425-9461
[9]   GENERALIZED FOURIER-TRANSFORMS FOR THE SOLITON-EQUATIONS - GAUGE-COVARIANT FORMULATION [J].
GERDJIKOV, VS .
INVERSE PROBLEMS, 1986, 2 (01) :51-74
[10]  
GERDJIKOV VS, 1994, THEOR MATH PHYS, V99, P292