Estimation and prediction for a class of dynamic nonlinear statistical models

被引:141
作者
Ord, JK [1 ]
Koehler, AB
Snyder, RD
机构
[1] Penn State Univ, Dept Management Sci & Informat Syst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Miami Univ, Dept Decis Sci & Management Informat Syst, Oxford, OH 45056 USA
[4] Monash Univ, Dept Econometr, Clayton, Vic 3168, Australia
关键词
forecasting; Holt-Winters method; maximum likelihood estimation; state-space models;
D O I
10.2307/2965433
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A class of nonlinear state-space models, characterized by a single source of randomness, is introduced. A special case, the model underpinning the multiplicative Holt-Winters method of forecasting, is identified. Maximum likelihood estimation based on exponential smoothing instead of a Kalman filter, and with the potential to be applied in contexts involving non-Gaussian disturbances, is considered. A method for computing prediction intervals is proposed and evaluated on both simulated and real data.
引用
收藏
页码:1621 / 1629
页数:9
相关论文
共 50 条
  • [41] Exponential class of dynamic binary choice panel data models with fixed effects
    Al-Sadoon, Majid M.
    Li, Tong
    Pesaran, M. Hashem
    ECONOMETRIC REVIEWS, 2017, 36 (6-9) : 898 - 927
  • [42] Prediction-based estimation for diffusion models with high-frequency data
    Jorgensen, Emil S.
    Sorensen, Michael
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2021, 4 (01) : 483 - 511
  • [43] Wind gust estimation by combining a numerical weather prediction model and statistical post-processing
    Patlakas, Platon
    Drakaki, Eleni
    Galanis, George
    Spyrou, Christos
    Kallos, George
    EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2017, EGU DIVISION ENERGY, RESOURCES & ENVIRONMENT (ERE), 2017, 125 : 190 - 198
  • [44] QUASI-MAXIMUM LIKELIHOOD AND THE KERNEL BLOCK BOOTSTRAP FOR NONLINEAR DYNAMIC MODELS
    Parente, Paulo M. D. C.
    Smith, Richard J.
    JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (04) : 377 - 405
  • [45] Estimation of linear dynamic panel data models with time-invariant regressors
    Kripfganz, Sebastian
    Schwarz, Claudia
    JOURNAL OF APPLIED ECONOMETRICS, 2019, 34 (04) : 526 - 546
  • [46] Algebraic statistical models
    Drton, Mathias
    Sullivaut, Seth
    STATISTICA SINICA, 2007, 17 (04) : 1273 - 1297
  • [47] A new method for the estimation of variance matrix with prescribed zeros in nonlinear mixed effects models
    Chafai, Djalil
    Concordet, Didier
    STATISTICS AND COMPUTING, 2009, 19 (02) : 129 - 138
  • [48] Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models
    Olsson, Jimmy
    Cappe, Olivier
    Douc, Randal
    Moulines, Eric
    BERNOULLI, 2008, 14 (01) : 155 - 179
  • [49] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Olsson, Jimmy
    Westerborn Alenlov, Johan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (02) : 545 - 576
  • [50] Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
    Jimmy Olsson
    Johan Westerborn Alenlöv
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 545 - 576