High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

被引:170
作者
Fukui, Kosuke [1 ]
Tomita, Akihisa [1 ]
Okamoto, Atsushi [1 ]
Fujii, Keisuke [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, Kita14,Nishi9, Sapporo, Hokkaido 0600814, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan
关键词
ACCURACY THRESHOLD; ALGORITHMS; COMPUTER; MEMORY;
D O I
10.1103/PhysRevX.8.021054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.
引用
收藏
页数:12
相关论文
共 60 条
[31]   Blossom V: a new implementation of a minimum cost perfect matching algorithm [J].
Kolmogorov, Vladimir .
MATHEMATICAL PROGRAMMING COMPUTATION, 2009, 1 (01) :43-67
[32]   Resource Costs for Fault-Tolerant Linear Optical Quantum Computing [J].
Li, Ying ;
Humphreys, Peter C. ;
Mendoza, Gabriel J. ;
Benjamin, Simon C. .
PHYSICAL REVIEW X, 2015, 5 (04)
[33]   Universal quantum computation with continuous-variable cluster states [J].
Menicucci, Nicolas C. ;
van Loock, Peter ;
Gu, Mile ;
Weedbrook, Christian ;
Ralph, Timothy C. ;
Nielsen, Michael A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)
[34]   Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States [J].
Menicucci, Nicolas C. .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[35]   Temporal-mode continuous-variable cluster states using linear optics [J].
Menicucci, Nicolas C. .
PHYSICAL REVIEW A, 2011, 83 (06)
[36]   Arbitrarily Large Continuous-Variable Cluster States from a Single Quantum Nondemolition Gate [J].
Menicucci, Nicolas C. ;
Ma, Xian ;
Ralph, Timothy C. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[37]   Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects [J].
Monroe, C. ;
Raussendorf, R. ;
Ruthven, A. ;
Brown, K. R. ;
Maunz, P. ;
Duan, L. -M. ;
Kim, J. .
PHYSICAL REVIEW A, 2014, 89 (02)
[38]   14-Qubit Entanglement: Creation and Coherence [J].
Monz, Thomas ;
Schindler, Philipp ;
Barreiro, Julio T. ;
Chwalla, Michael ;
Nigg, Daniel ;
Coish, William A. ;
Harlander, Maximilian ;
Haensel, Wolfgang ;
Hennrich, Markus ;
Blatt, Rainer .
PHYSICAL REVIEW LETTERS, 2011, 106 (13)
[39]   Encoding qubits into oscillators with atomic ensembles and squeezed light [J].
Motes, Keith R. ;
Baragiola, Ben Q. ;
Gilchrist, Alexei ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW A, 2017, 95 (05)
[40]   Optical quantum computation using cluster states [J].
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :040503-1