High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

被引:170
作者
Fukui, Kosuke [1 ]
Tomita, Akihisa [1 ]
Okamoto, Atsushi [1 ]
Fujii, Keisuke [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, Kita14,Nishi9, Sapporo, Hokkaido 0600814, Japan
[2] Kyoto Univ, Grad Sch Sci, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan
关键词
ACCURACY THRESHOLD; ALGORITHMS; COMPUTER; MEMORY;
D O I
10.1103/PhysRevX.8.021054
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.
引用
收藏
页数:12
相关论文
共 60 条
[1]   Universal quantum computation with temporal-mode bilayer square lattices [J].
Alexander, Rafael N. ;
Yokoyama, Shota ;
Furusawa, Akira ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW A, 2018, 97 (03)
[2]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[3]   Quantum encodings in spin systems and harmonic oscillators [J].
Bartlett, SD ;
de Guise, H ;
Sanders, BC .
PHYSICAL REVIEW A, 2002, 65 (05) :4
[4]   Topological quantum distillation [J].
Bombin, H. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[5]   Protected gates for superconducting qubits [J].
Brooks, Peter ;
Kitaev, Alexei ;
Preskill, John .
PHYSICAL REVIEW A, 2013, 87 (05)
[6]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[7]   Amplification and squeezing of quantum noise with a tunable Josephson metamaterial [J].
Castellanos-Beltran, M. A. ;
Irwin, K. D. ;
Hilton, G. C. ;
Vale, L. R. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (12) :929-931
[8]   Maximal Adaptive-Decision Speedups in Quantum-State Readout [J].
D'Anjou, B. ;
Kuret, L. ;
Childress, L. ;
Coish, W. A. .
PHYSICAL REVIEW X, 2016, 6 (01)
[9]   Soft Decoding of a Qubit Readout Apparatus [J].
D'Anjou, B. ;
Coish, W. A. .
PHYSICAL REVIEW LETTERS, 2014, 113 (23)
[10]   Noise thresholds for optical quantum computers [J].
Dawson, CM ;
Haselgrove, HL ;
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)