Conjugacy classes of derangements in finite transitive groups

被引:3
作者
Guralnick, Robert M. [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
POINT FREE ELEMENTS; PERMUTATION GROUP; BRAUER GROUPS; NUMBER; BOUNDS;
D O I
10.1134/S0081543816010077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a permutation group acting transitively on a finite set Omega. We classify all such (G, Omega) when G contains a single conjugacy class of derangements. This was done under the assumption that G acts primitively by Burness and Tong-Viet. It turns out that there are no imprimitive examples. We also discuss some results on the proportion of conjugacy classes which consist of derangements.
引用
收藏
页码:112 / 117
页数:6
相关论文
共 16 条
  • [1] [Anonymous], T AM MATH S IN PRESS
  • [2] THE PROPORTION OF FIXED-POINT FREE ELEMENTS OF A TRANSITIVE PERMUTATION GROUP
    BOSTON, N
    DABROWSKI, W
    FOGUEL, T
    GIES, PJ
    LEAVITT, J
    OSE, DT
    JACKSON, DA
    [J]. COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) : 3259 - 3275
  • [3] DERANGEMENTS IN PRIMITIVE PERMUTATION GROUPS, WITH AN APPLICATION TO CHARACTER THEORY
    Burness, Timothy C.
    Tong-Viet, Hung P.
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (01) : 63 - 96
  • [4] ON THE NUMBER OF FIXED-POINT FREE ELEMENTS IN A PERMUTATION GROUP
    CAMERON, PJ
    COHEN, AM
    [J]. DISCRETE MATHEMATICS, 1992, 106 : 135 - 138
  • [5] On fixed points of permutations
    Diaconis, Persi
    Fulman, Jason
    Guralnick, Robert
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 28 (01) : 189 - 218
  • [6] FEIN B, 1981, J REINE ANGEW MATH, V328, P39
  • [7] SCHUR COVERS AND CARLITZS CONJECTURE
    FRIED, MD
    GURALNICK, R
    SAXL, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1993, 82 (1-3) : 157 - 225
  • [8] Fulman J., ARXIV150800039MATHGR
  • [9] Fulman J.E., 2003, Groups, Combinatorics and Geometry, P99
  • [10] BOUNDS ON THE NUMBER AND SIZES OF CONJUGACY CLASSES IN FINITE CHEVALLEY GROUPS WITH APPLICATIONS TO DERANGEMENTS
    Fulman, Jason
    Guralnick, Robert
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (06) : 3023 - 3070