Schur-Weyl duality and categorification

被引:0
作者
Brundan, Jonathan [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III | 2014年
关键词
Schur-Weyl duality; highest weight categories; categorification; HIGHEST WEIGHT CATEGORIES; HECKE ALGEBRAS; CHARACTER FORMULAS; CRYSTALS; POLYNOMIALS; MODULES; FINITE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In some joint work with Kleshchev in 2008, we discovered a higher level analog of Schur-Weyl duality, relating parabolic category O for the general linear Lie algebra to certain cyclotomic Hecke algebras. Meanwhile Rouquier and others were developing a general axiomatic approach to the study of categorical actions of Lie algebras. In this survey, we recall aspects of these two theories, then explain some related recent developments due to Losev and Webster involving tensor product categorifications.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 60 条
[1]   On the decomposition numbers of the Hecke algebra of G(m,1,n) [J].
Ariki, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (04) :789-808
[2]  
Backelin E., 1999, Represent. Theory, V3, P139
[3]  
Bao H., ARXIV13100103
[4]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[5]  
Berenstein A, 2004, CONTEMP MATH, V433, P13
[6]   Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra q(n) [J].
Brundan, J .
ADVANCES IN MATHEMATICS, 2004, 182 (01) :28-77
[7]   Kazhdan-Luszti polynomials and character formulae for the Lie superalebra gl(m|n) [J].
Brundan, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) :185-231
[8]  
Brundan J., ARXIV13100349
[9]  
Brundan J., ARXIV14046574
[10]  
Brundan J., 2001, Represent. Theory, V5, P317