G-expectation, G-Brownian motion and related Stochastic calculus of ito type

被引:0
作者
Peng, Shige [1 ]
机构
[1] Shandong Univ, Inst Math, Inst Finance, Jinan 250100, Peoples R China
来源
Stochastic Analysis and Applications | 2007年 / 2卷
关键词
g-expectation; G-expectation; G-normal distribution; BSDE; SDE; nonlinear probability theory; nonlinear expectation; Brownian motion; Ito's stochastic calculus; lto's integral; Ito's formula; Gaussian process; quadratic variation process;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of nonlinear expectation - G-expectation generated by a nonlinear heat equation with a given infinitesimal generator G. We first discuss the notion of G-standard normal distribution. With this nonlinear distribution we can introduce our G-expectation under which the canonical process is a G-Brownian motion. We then establish the related stochastic calculus, especially stochastic integrals of lto's type with respect to our G-Brownian motion and derive the related Ito's formula. We have also given the existence and uniqueness of stochastic differential equation under our G-expectation. As compared with our previous framework of g-expectations, the theory of G-expectation is intrinsic in the sense that it is Dot based on a given (linear) probability space.
引用
收藏
页码:541 / 567
页数:27
相关论文
共 45 条
  • [1] Coherent measures of risk
    Artzner, P
    Delbaen, F
    Eber, JM
    Heath, D
    [J]. MATHEMATICAL FINANCE, 1999, 9 (03) : 203 - 228
  • [2] Artzner P., 1997, RISK, V10, P68
  • [3] Avellaneda M., 1995, Applied Mathematical Finance, V2, P73, DOI DOI 10.1080/13504869500000005
  • [4] BARRIEU P, 2004, IN PRESS CONTEMPORAR
  • [5] Barrieu P., 2005, PRICING HEDGING OPTI
  • [6] BRIAND P, 2000, ELECT COMM PROBAB, V5
  • [7] Jensen's inequality for g-expectation:: part 1
    Chen, ZJ
    Kulperger, R
    Jiang, L
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (11) : 725 - 730
  • [8] Ambiguity, risk, and asset returns in continuous time
    Chen, ZJ
    Epstein, L
    [J]. ECONOMETRICA, 2002, 70 (04) : 1403 - 1443
  • [9] A property of backward stochastic differential equations
    Chen, ZJ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04): : 483 - 488
  • [10] A general downcrossing inequality for g-martingales
    Chen, ZJ
    Peng, SG
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) : 169 - 175