Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics

被引:186
作者
Chen, XF [1 ]
Guo, JS
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 117, Taiwan
关键词
D O I
10.1007/s00208-003-0414-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study traveling waves of a discrete system u(j) = g(u(j+1)) + g(u(j-1)) - 2g(u(j)) + f (u(j)), j is an element of Z, where f and g are Lipschitz continuous with g increasing and f monostable, i.e., f (0) = f (1) = 0 and f > 0 on (0, 1). We show that there is a positive c(min) such that a traveling wave of speed c exists if and only if c greater than or equal to c(min). Also, we show that traveling waves are unique up to a translation if f'(0) > 0 > f(l) and g'(0) > 0. The tails of traveling waves are also investigated.
引用
收藏
页码:123 / 146
页数:24
相关论文
共 25 条
[1]  
Aronson D.G., 1980, DYNAMICS MODELLING R, P161, DOI [DOI 10.1016/13978-0-12-669550-2.50010-5, 10.1016/B978-0-12-669550-2.50010-5, DOI 10.1016/B978-0-12-669550-2.50010-5]
[2]  
Aronson D. G., 1975, LECT NOTES MATH, V446, P5
[3]  
BATES PW, TRAVELING WAVES BIST
[4]  
BRAMSON M, 1983, MEMOIRS AM MATH SOC, V44
[5]  
CHEN X, 2002, J DIFFER EQUATIONS, V184, P1137
[6]  
Chen X., 1997, ADV DIFFERENTIAL EQU, V2, P125
[7]   Traveling waves in lattice dynamical systems [J].
Chow, SN ;
Mallet-Paret, J ;
Shen, WX .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (02) :248-291
[8]   TRAVELING WAVES AND FINITE PROPAGATION IN A REACTION-DIFFUSION EQUATION [J].
DEPABLO, A ;
VAZQUEZ, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :19-61
[9]   Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :1-99
[10]  
Fife P. C., 1979, LECT NOTES BIOMATH, P28