Privacy-Preserving and Explainable AI for Cardiovascular Imaging

被引:9
作者
Puiu, Andrei [1 ,2 ]
Vizitiu, Anamaria [1 ,2 ]
Nita, Cosmin [1 ,2 ]
Itu, Lucian [1 ,2 ]
Sharma, Puneet [3 ]
Comaniciu, Dorin [3 ]
机构
[1] Siemens SRL, Advanta, 15th November Blvd,78, Brasov 500097, Romania
[2] Transilvania Univ Brasov, Automat & Informat Technol, 5 Mihai Viteazu St, Brasov 500174, Romania
[3] Siemens Healthineers, Digital Technol & Innovat, 755 Coll Rd, Princeton, NJ 08540 USA
来源
STUDIES IN INFORMATICS AND CONTROL | 2021年 / 30卷 / 02期
关键词
Artificial intelligence; Medical imaging; Cardiovascular disease; Explainability; Privacy preservation; FRACTIONAL FLOW RESERVE; ARTIFICIAL-INTELLIGENCE; DISEASES; FUTURE;
D O I
10.24846/v30i2y202102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical imaging provides valuable input for managing cardiovascular disease (CVD), ranging from risk assessment to diagnosis, therapy planning and follow-up. Artificial intelligence (AI) based medical image analysis algorithms provide nowadays state-of-the-art results in CVD management, mainly due to the increase in computational power and data storage capacities. Various challenges remain to be addressed to speed-up the adoption of AI based solutions in routine CVD management. Although medical imaging and in general health data are abundant, the access and transfer of such data is difficult to realize due to ethical considerations. Hence, AI algorithms are often trained on relatively small datasets, thus limiting their robustness, and potentially leading to biased or skewed results for certain patient or pathology sub-groups. Furthermore, explainability and interpretability have become core requirements for AI algorithms, to ensure that the rationale behind output inference can be revealed. The paper focuses on recent developments related to these two challenges, discusses the clinical impact of proposed solutions, and provides conclusions for further research and development. It also presents examples related to the diagnosis of stable coronary artery disease, a whole-body circulation model for the assessment of structural heart disease, and to the diagnosis and treatment planning of aortic coarctation, a congenital heart disease.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 45 条
[1]  
Abadi M., 2016, ABS161006918 ARXIV
[2]  
[Anonymous], 2015, NATURE, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[3]  
[Anonymous], 2017, Lancet, DOI DOI 10.1016/S0140-6736(17)32152-9
[4]   Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation [J].
Armstrong, Aimee K. ;
Zampi, Jeffrey D. ;
Itu, Lucian M. ;
Benson, Lee N. .
CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2020, 95 (02) :294-299
[5]   A primer in artificial intelligence in cardiovascular medicine [J].
Benjamins, J. W. ;
Hendriks, T. ;
Knuuti, J. ;
Juarez-Orozco, L. E. ;
van der Harst, P. .
NETHERLANDS HEART JOURNAL, 2019, 27 (09) :392-402
[6]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[7]  
Bond R., 2020, J ESC DIGITAL HLTH
[8]   Automation bias in medicine: The influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms [J].
Bond, Raymond R. ;
Novotny, Tomas ;
Andrsova, Irena ;
Koc, Lumir ;
Sisakova, Martina ;
Finlay, Dewar ;
Guldenring, Daniel ;
McLaughlin, James ;
Peace, Aaron ;
McGilligan, Victoria ;
Leslie, Stephen J. ;
Wang, Hui ;
Malik, Marek .
JOURNAL OF ELECTROCARDIOLOGY, 2018, 51 (06) :S6-S11
[9]  
Chabanne H., 2017, IACR CRYPTOL EPRINT, V35
[10]   Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium [J].
Coenen, Adriaan ;
Kim, Young-Hak ;
Kruk, Mariusz ;
Tesche, Christian ;
De Geer, Jakob ;
Kurata, Akira ;
Lubbers, Marisa L. ;
Daemen, Joost ;
Itu, Lucian ;
Rapaka, Saikiran ;
Sharma, Puneet ;
Schwemmer, Chris ;
Persson, Anders ;
Schoepf, U. Joseph ;
Kepka, Cezary ;
Yang, Dong Hyun ;
Nieman, Koen .
CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)