ACCURATE 3D KIDNEY SEGMENTATION USING UNSUPERVISED DOMAIN TRANSLATION AND ADVERSARIAL NETWORKS

被引:2
作者
Zeng, Wankang [1 ]
Fan, Wenkang [1 ]
Chen, Rong [1 ]
Zheng, Zhuohui [1 ]
Zheng, Song [2 ]
Chen, Jianhui [2 ]
Liu, Rong [2 ]
Zeng, Qiang [3 ]
Liu, Zengqin [4 ]
Chen, Yinran [1 ]
Luo, Xiongbiao [1 ]
机构
[1] Xiamen Univ, Dept Comp Sci, Xiamen 361005, Peoples R China
[2] Fujian Med Univ, Dept Urol, Union Hosp, Fuzhou 35001, Peoples R China
[3] Xiamen Univ, Zhongshan Hosp, Xiamen 361004, Peoples R China
[4] Shenzhen Peoples Hosp, Dept Urol, Shenzhen 518020, Peoples R China
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
关键词
Kidney segmentation; CT urography; unsupervised domain adaptation; deep learning; IMAGES;
D O I
10.1109/ISBI48211.2021.9434099
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computed tomography urography imaging is routinely performed to evaluate the kidneys. Kidney 3D segmentation and reconstruction from urographic images provides physicians with an intuitive visualization way to accurately diagnose and treat kidney diseases, particularly used in surgical planning and outcome analysis before and after kidney surgery. While 3D fully convolution networks have achieved a big success in medical image segmentation, they get trapped in clinical unseen data and cannot be adapted in deferent modalities with one training procedure. This study proposes an unsupervised domain adaptation or translation method with 2D networks to deeply learn urographic images for accurate kidney segmentation. We tested our proposed method on clinical urography data. The experimental results demonstrate our proposed method can resolve the domain shift problem of kidney segmentation and achieve the comparable or better results than supervised learning based segmentation methods.
引用
收藏
页码:598 / 602
页数:5
相关论文
共 14 条
  • [1] Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
  • [2] Goodfellow IJ, 2014, NIPS, V27, P2672, DOI DOI 10.1145/3422622
  • [3] Heller N., 2019, The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context, CT Semantic Segmentations, and Surgical Outcomes
  • [4] Huo YK, 2018, I S BIOMED IMAGING, P1217, DOI 10.1109/ISBI.2018.8363790
  • [5] Image-to-Image Translation with Conditional Adversarial Networks
    Isola, Phillip
    Zhu, Jun-Yan
    Zhou, Tinghui
    Efros, Alexei A.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5967 - 5976
  • [6] Lequan Yu, 2017, Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017. 20th International Conference. Proceedings: LNCS 10434, P287, DOI 10.1007/978-3-319-66185-8_33
  • [7] Least Squares Generative Adversarial Networks
    Mao, Xudong
    Li, Qing
    Xie, Haoran
    Lau, Raymond Y. K.
    Wang, Zhen
    Smolley, Stephen Paul
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2813 - 2821
  • [8] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 565 - 571
  • [9] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [10] Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review
    Torres, Helena R.
    Queiros, Sandro
    Morais, Pedro
    Oliveira, Bruno
    Fonseca, Jaime C.
    Vilaca, Joao L.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 157 : 49 - 67