Backward-Wave Suppression Analysis, and Design and Fabrication of a Prototype Millimeter-Wave Ring-Bar Slow-Wave Structure

被引:16
作者
Sengele, Sean [1 ]
Barsanti, Marc L. [2 ]
Hargreaves, Thomas A. [2 ]
Armstrong, Carter M. [2 ]
Booske, John H. [3 ]
Lau, Yue-Ying [4 ]
机构
[1] Georgia Tech Res Inst, Sensors & Electromagnet Applicat Lab, Smyrna, GA 30080 USA
[2] L3 Commun, Electron Devices Div, San Carlos, CA 94070 USA
[3] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[4] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
关键词
Backward-wave (BW) mode; millimeter-wave (mmw); ring bar; traveling-wave tube (TWT); CONTRAWOUND HELIX CIRCUITS;
D O I
10.1109/TPS.2014.2366243
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A challenge for high-power millimeter-wave (mmw) traveling-wave tube (TWT) amplifiers is to realize high-power operation without incurring oscillation from backward-wave (BW) interaction. Conventional wisdom purports that contrawound (including ring bar) helix TWTs are superior to monofilar helix TWTs for stability against BW oscillations due to a zero or at least greatly suppressed BW interaction impedance (K-BW) compared with the forward-wave (FW) interaction impedance (K-FW). We use 3-D electromagnetic (EM) field calculations of a ring-bar helix to compare the BW and FW interaction impedances. Using a sine/cosine basis set and a comparison at a fixed phase velocity (rather than fixed frequency assumed in previous analyses), we show that the BW interaction impedance is not always significantly suppressed in the ring-bar/contrawound helix. In spite of the lack of ubiquitous BW stability, we use EM simulations to illustrate that there remain specific, efficient, high-gain mmw ring-bar designs with K-BW < K-FW. The accuracy of the simulations is validated by experimental measurements that confirm simulation predictions of phase velocity and S-parameters.
引用
收藏
页码:3949 / 3960
页数:12
相关论文
共 26 条
[1]  
Ayers W. R., 1957, 358 STANF U MICR LAB
[2]  
BASTEN MA, 1995, P SOC PHOTO-OPT INS, V2557, P262, DOI 10.1117/12.218559
[3]  
Birdsall C.K., 1956, IRE Trans. Electron Devices, V3, P190
[4]   Insights from one-dimensional linearized Pierce theory about wideband traveling-wave tubes with high space charge [J].
Booske, JH ;
Converse, MC .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2004, 32 (03) :1066-1072
[5]   Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation [J].
Booske, John H. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[6]   THE EFFECTS OF DIELECTRIC AND METAL LOADING ON THE DISPERSION CHARACTERISTICS FOR CONTRAWOUND HELIX CIRCUITS USED IN HIGH-POWER TRAVELING-WAVE TUBES [J].
CAIN, WN ;
GROW, RW .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (06) :1566-1578
[7]   CROSS-WOUND TWIN HELICES FOR TRAVELING-WAVE TUBES [J].
CHODOROW, M ;
CHU, EL .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (01) :33-43
[8]   Development of High-Power Ka/Q Dual-Band and Communications/Radar Dual-Function Helix-TWT [J].
Chong, Chae K. ;
Layman, Dennis ;
Le Borgne, Ronald H. ;
Ramay, Michael L. ;
Stolz, Richard J. ;
Zhai, Xiaoling .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (05) :913-918
[9]  
Cooke SJ, 2000, IEEE T PLASMA SCI, V28, P841, DOI 10.1109/27.887737
[10]  
Gilmour jr A.S, 1994, Principles of traveling wave tubes