A Gaussian Markov random field approach to convergence analysis

被引:4
作者
Ippoliti, L. [1 ]
Romagnoli, L. [2 ]
Arbia, G. [3 ]
机构
[1] Univ G DAnnunzio, Dept Econ Studies, I-65127 Pescara, Italy
[2] Univ Molise, EGSI Dept, Campobasso, Italy
[3] Univ Cattolica Sacro Cuore, Dept Stat Sci, I-00168 Rome, Italy
关键词
Gaussian Markov random fields; Convergence analysis; Simultaneous autoregressions; beta-convergence model; GROWTH; MODELS; CAR;
D O I
10.1016/j.spasta.2013.07.005
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spatial models have been widely applied in the context of growth regressions with spatial spillovers usually modelled by simultaneous autoregressions (SAR). Although largely used, such a class of models present some logical difficulties connected with the error behaviour, the lack of identifiability of the model parameters and their substantive interpretation. To overcome these logical pitfalls, in this paper we introduce a new specification of regional growth regressions by applying multivariate Gaussian Markov random fields (GMRFs). We discuss the theoretical properties of the proposed model and show some empirical results on the economic growth pattern of 254 NUTS-2 European regions in the period 1992-2006. We show that the proposed GMRF model is able to capture the complexity of the phenomenon including the possibility of estimating site-specific convergence parameters which may highlight clustering of regions and spatial heterogeneities in the speed of convergence. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 45 条
  • [1] Abreu M., 2005, REG DEV, V21, P13
  • [2] Allen R. G., 1998, FAO Irrigation and Drainage Paper
  • [3] [Anonymous], METAANALYSIS BETA CO
  • [4] Arbia G, 2006, ADV SPAT SCI, P1
  • [5] A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007-2011)
    Arbia, Giuseppe
    [J]. SPATIAL ECONOMIC ANALYSIS, 2011, 6 (04) : 377 - 395
  • [6] Banerjee S., 2003, Hierarchical modeling and analysis for spatial data
  • [7] Barro R. J., 2004, Economic growth
  • [8] BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
  • [9] Bhansali R. J., 2005, J MATH STAT, V4, P287
  • [10] BROOK D, 1964, BIOMETRIKA, V51, P481