A Gaussian Markov random field approach to convergence analysis

被引:4
|
作者
Ippoliti, L. [1 ]
Romagnoli, L. [2 ]
Arbia, G. [3 ]
机构
[1] Univ G DAnnunzio, Dept Econ Studies, I-65127 Pescara, Italy
[2] Univ Molise, EGSI Dept, Campobasso, Italy
[3] Univ Cattolica Sacro Cuore, Dept Stat Sci, I-00168 Rome, Italy
关键词
Gaussian Markov random fields; Convergence analysis; Simultaneous autoregressions; beta-convergence model; GROWTH; MODELS; CAR;
D O I
10.1016/j.spasta.2013.07.005
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spatial models have been widely applied in the context of growth regressions with spatial spillovers usually modelled by simultaneous autoregressions (SAR). Although largely used, such a class of models present some logical difficulties connected with the error behaviour, the lack of identifiability of the model parameters and their substantive interpretation. To overcome these logical pitfalls, in this paper we introduce a new specification of regional growth regressions by applying multivariate Gaussian Markov random fields (GMRFs). We discuss the theoretical properties of the proposed model and show some empirical results on the economic growth pattern of 254 NUTS-2 European regions in the period 1992-2006. We show that the proposed GMRF model is able to capture the complexity of the phenomenon including the possibility of estimating site-specific convergence parameters which may highlight clustering of regions and spatial heterogeneities in the speed of convergence. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 50 条
  • [1] An Efficient Gaussian Filter Based on Gaussian Symmetric Markov Random Field
    Xiong, Fusong
    Zhang, Jian
    Zhang, Zhiqiang
    Ling, Yun
    IEEE ACCESS, 2022, 10 : 74590 - 74604
  • [2] ANALYSIS AND VALIDATION OF GRID DEM GENERATION BASED ON GAUSSIAN MARKOV RANDOM FIELD
    Aguilar, F. J.
    Aguilar, M. A.
    Blanco, J. L.
    Nemmaoui, A.
    Garcia Lorca, A. M.
    XXIII ISPRS CONGRESS, COMMISSION II, 2016, 41 (B2): : 277 - 284
  • [3] GAUSSIAN MARKOV RANDOM FIELD PRIORS FOR INVERSE PROBLEMS
    Bardsley, Johnathan M.
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (02) : 397 - 416
  • [4] Risks of Classification of the Gaussian Markov Random Field Observations
    Ducinskas, Kestutis
    Dreiziene, Lina
    JOURNAL OF CLASSIFICATION, 2018, 35 (03) : 422 - 436
  • [5] Gaussian Markov random field spatial models in GAMLSS
    De Bastiani, Fernanda
    Rigby, Robert A.
    Stasinopoulous, Dimitrios M.
    Cysneiros, Audrey H. M. A.
    Uribe-Opazo, Miguel A.
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (01) : 168 - 186
  • [6] Hierarchical Gaussian Markov Random Field for Image Denoising
    Monma, Yuki
    Aro, Kan
    Yasuda, Muneki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (03) : 689 - 699
  • [7] Risks of Classification of the Gaussian Markov Random Field Observations
    Kęstutis Dučinskas
    Lina Dreižienė
    Journal of Classification, 2018, 35 : 422 - 436
  • [8] A comparative study of Gaussian geostatistical models and Gaussian Markov random field models
    Song, Hae-Ryoung
    Fuentes, Montserrat
    Ghosh, Sujit
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (08) : 1681 - 1697
  • [9] Regularization of diffusion tensor maps using a non-Gaussian Markov random field approach
    Martín-Fernández, M
    Alberola-López, C
    Ruiz-Alzola, J
    Westin, CF
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003, PT 2, 2003, 2879 : 92 - 100
  • [10] Gaussian Mixture Markov Random Field For Image Denoising And Reconstruction
    Zhang, Ruoqiao
    Bouman, Charles A.
    Thibault, Jean-Baptiste
    Sauer, Ken D.
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 1089 - 1092