A Hardware-Oriented Random Number Generation Method and A Verification System for FPGA

被引:0
作者
Hori, Sansei [1 ]
Tamukoh, Hakaru [1 ]
机构
[1] Kyushu Inst Technol, Grad Sch Life Sci & Syst Engn, 2-4 Hibikino, Kitakyushu, Fukuoka 8080196, Japan
来源
PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021) | 2021年
关键词
FPGA; Hardware Accelerator; Xillybus; Deep Learning; Random Number Generator; RBM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning technology has made remarkable progress in recent years and has been applied to a variety of applications such as smartphones and cloud servers. These systems employ dedicated processors to save power consumptions and process massive data. In this paper, we introduce a hardware-oriented restricted Boltzmann machine and propose a field-programmable gate array (FPGA) infrastructure for easy verification of user circuits. The infrastructure makes it easy to communicate and control between the host PC and the user circuit.
引用
收藏
页码:12 / 15
页数:4
相关论文
共 10 条
  • [1] [Anonymous], 2010, MOMENTUM
  • [2] Fischer Asja, 2012, Progress in Pattern Recognition, Image Analysis, ComputerVision, and Applications. Proceedings 17th Iberoamerican Congress, CIARP 2012, P14, DOI 10.1007/978-3-642-33275-3_2
  • [3] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [4] Hori S., 2019, IEICE Tech. Rep., V119, P1
  • [5] Restricted Boltzmann Machines Without Random Number Generators for Efficient Digital Hardware Implementation
    Hori, Sansei
    Morie, Takashi
    Tamukoh, Hakaru
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT I, 2016, 9886 : 391 - 398
  • [6] In-Datacenter Performance Analysis of a Tensor Processing Unit
    Jouppi, Norman P.
    Young, Cliff
    Patil, Nishant
    Patterson, David
    Agrawal, Gaurav
    Bajwa, Raminder
    Bates, Sarah
    Bhatia, Suresh
    Boden, Nan
    Borchers, Al
    Boyle, Rick
    Cantin, Pierre-luc
    Chao, Clifford
    Clark, Chris
    Coriell, Jeremy
    Daley, Mike
    Dau, Matt
    Dean, Jeffrey
    Gelb, Ben
    Ghaemmaghami, Tara Vazir
    Gottipati, Rajendra
    Gulland, William
    Hagmann, Robert
    Ho, C. Richard
    Hogberg, Doug
    Hu, John
    Hundt, Robert
    Hurt, Dan
    Ibarz, Julian
    Jaffey, Aaron
    Jaworski, Alek
    Kaplan, Alexander
    Khaitan, Harshit
    Killebrew, Daniel
    Koch, Andy
    Kumar, Naveen
    Lacy, Steve
    Laudon, James
    Law, James
    Le, Diemthu
    Leary, Chris
    Liu, Zhuyuan
    Lucke, Kyle
    Lundin, Alan
    MacKean, Gordon
    Maggiore, Adriana
    Mahony, Maire
    Miller, Kieran
    Nagarajan, Rahul
    Narayanaswami, Ravi
    [J]. 44TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2017), 2017, : 1 - 12
  • [7] Backpropagation Applied to Handwritten Zip Code Recognition
    LeCun, Y.
    Boser, B.
    Denker, J. S.
    Henderson, D.
    Howard, R. E.
    Hubbard, W.
    Jackel, L. D.
    [J]. NEURAL COMPUTATION, 1989, 1 (04) : 541 - 551
  • [8] NVIDIA, NVIDIA TESL V100 GPU
  • [9] A REPROGRAMMABLE GATE ARRAY AND APPLICATIONS
    TRIMBERGER, S
    [J]. PROCEEDINGS OF THE IEEE, 1993, 81 (07) : 1030 - 1041
  • [10] Wang S., 2019, BFloat16: The secret to high performance on Cloud TPUs, V4