Electrical transport properties of polycrystalline SnO2 thin films

被引:7
|
作者
Li, Q. L. [1 ]
Zhang, X. H. [2 ]
Lin, T. [3 ]
Gao, K. H. [1 ]
机构
[1] Tianjin Univ, Dept Phys, Tianjin Key Lab Low Dimens Mat Phys & Preparing T, Tianjin 300354, Peoples R China
[2] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, Natl Lab Infrared Phys, Shanghai 200083, Peoples R China
基金
国家重点研发计划;
关键词
Tin dioxide; Electrical properties; Magnetoresistance; Weak localization effect; TEMPERATURE-DEPENDENCE; OXIDE; METAL; GROWTH; IN2O3;
D O I
10.1016/j.jallcom.2018.06.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the electrical transport properties of degenerate tin dioxide thin films with thickness larger than 250 nm. Our samples have a rutile structure and the effective mass of electron is 0.31 m(0), which is obtained from the variation in optical bandgap. The temperature dependence of the Hall mobility indicates that the ionized impurity scattering is the dominant elastic scattering mechanism for electrons. In the low temperature range, the clear negative magnetoresistivity is observed, which can be attributed to the three-dimensional weak localization (WL) effect. By applying the three-dimensional WL theory, we extracted the electron dephasing length, which decreased on increasing temperature. Unexpectedly, the temperature dependence of the extracted dephasing length is found to be dominated by the electron-electron scattering in the small-energy-transfer process and the electron-phonon scattering has negligible contribution. This can be attributed to the low electron concentration in our samples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:295 / 299
页数:5
相关论文
共 50 条
  • [1] Electrical transport properties of thick and thin Ta-doped SnO2 films
    Gao, Zong-Hui
    Wang, Zi-Xiao
    Hou, Dong-Yu
    Liu, Xin-Dian
    Li, Zhi-Qing
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (06)
  • [2] Electrical transport properties in Ta-doped SnO2 thin films
    Wu, HaiBin
    Gou, BingPing
    Zhang, HaiLian
    Han, WanQiang
    MECHATRONICS AND INTELLIGENT MATERIALS III, PTS 1-3, 2013, 706-708 : 379 - +
  • [3] Structural mosaicity and electrical properties of pyrolytic SnO2:F thin films
    Garces, F. A.
    Budini, N.
    Koropecki, R. R.
    Arce, R. D.
    THIN SOLID FILMS, 2013, 531 : 172 - 178
  • [4] Nanocrystalline SnO2 thin films: Structural, morphological, electrical transport and optical studies
    Sakhare, R. D.
    Khuspe, G. D.
    Navale, S. T.
    Mulik, R. N.
    Chougule, M. A.
    Pawar, R. C.
    Lee, C. S.
    Sen, Shashwati
    Patil, V. B.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 563 : 300 - 306
  • [5] Enhanced electrical and optoelectronic properties of W doped SnO2 thin films
    Senthilkumar, P.
    Raja, S.
    Babu, R. Ramesh
    Vasuki, G.
    OPTICAL MATERIALS, 2022, 126
  • [6] Optical and electrical properties of F doped SnO2 thin films
    Bogle, Kashinath A.
    More, Kiran D.
    Begum, Sumayya
    Dadge, Jagdish W.
    Mahabole, Megha P.
    Khairnar, Rajendra S.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2018, 56 (10) : 755 - 758
  • [7] Low temperature electrical transport properties of F-doped SnO2 films
    Gao, K. H.
    Lin, T.
    Liu, X. D.
    Zhang, X. H.
    Li, X. N.
    Wu, J.
    Liu, Y. F.
    Wang, X. F.
    Chen, Y. W.
    Ni, B.
    Dai, N.
    Chu, J. H.
    SOLID STATE COMMUNICATIONS, 2013, 157 : 49 - 53
  • [8] Defect chemistry of antimony doped SnO2 thin films .2. Electrical properties
    Rekas, M
    Szklarski, Z
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-CHEMISTRY, 1996, 44 (03): : 163 - 177
  • [9] Investigations on the structural, optical and electrical properties of Nb-doped SnO2 thin films
    Gokulakrishnan, V.
    Parthiban, S.
    Jeganathan, K.
    Ramamurthi, K.
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (16) : 5553 - 5558
  • [10] Effect of platinum doping on the structural and electrical properties of SnO2 thin films
    Asar, Tarik
    Korkmaz, Burak
    Ozcelik, Suleyman
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2016, 11 (16) : 1285 - 1306