N and S co-doped 3D hierarchical porous carbon as high-performance electrode material for supercapacitors

被引:14
|
作者
Ning, Ke [1 ]
Zhao, Guangzhen [1 ]
Liu, Hanxiao [1 ]
Hu, Mingzhu [1 ]
Huang, Fei [1 ]
Li, Hengzheng [1 ]
Zhang, Li [1 ]
Zhu, Guang [1 ]
Wang, Hongyan [1 ]
Shi, Junyou [2 ]
机构
[1] Suzhou Univ, Nanomat Anhui Higher Educ Inst, Key Lab Spin Electron, Suzhou 234000, Peoples R China
[2] Beihua Univ, Coll Mat Sci & Engn, Jilin 132013, Peoples R China
关键词
Succulent leaves; N and S co-doping; Hierarchical porous carbon; Supercapacitors; GREEN SYNTHESIS; HIGH-ENERGY; NITROGEN; NANOSHEETS; BIOMASS; OXYGEN; ACTIVATION; FRAMEWORKS; DENSITY; SULFUR;
D O I
10.1016/j.diamond.2022.109080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The use of renewable and environmentally friendly biomass to prepare carbon materials with a hierarchical porous structure and large specific surface area has attracted great attention in energy storage devices (Super capacitors, SCs). Here, a succulent-leaf-derived carbon material with a hierarchical porous structure (N-S-HPC) was prepared through a one-step carbonization strategy using Mg(NO3)(2).6H(2)O and ZnCl2 as double activation agents and CH4N2S as S and N source. The N-S-HPC specific capacitance reached 455.3 F g(-1) at 1 A g(-1), and with 1 M Na2SO4 electrolyte. The assembled N-S-HPC//N-S-HPC symmetric SCs could enhance the voltage window to 1.8 V. Meanwhile, N-S-HPC exhibited the specific energy of 19.89 Wh kg(-1) (450 W kg(-1)) and highly stable cycling performance. Compared with previously reported biomass-derived carbon materials, N-S-HPC has the advantages of i) hierarchical porous sturcture and 2136.2 m(2) g(-1) maximal specific surface area, allowing accommodation of more ions; ii) 1177.5 m(2) g(-1) specific surface area for mesopores and macropores, providing shorter diffusion pathways; iii) rich co-doping of N (9.5 (at.)%) and S (2.21 (at.) %), increasing pseudocapacitive contribution and improving surface wettability. All these data indictae the great potential application prospect of N-S-HPC, suggesting the importance of biomass-derived carbon materials for symmetric SCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] N and S co-doped 3D hierarchical porous carbon as high-performance electrode material for supercapacitors
    Ning, Ke
    Zhao, Guangzhen
    Liu, Hanxiao
    Hu, Mingzhu
    Huang, Fei
    Li, Hengzheng
    Zhang, Li
    Zhu, Guang
    Wang, Hongyan
    Shi, Junyou
    Diamond and Related Materials, 2022, 126
  • [2] Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors
    Liu, Mingquan
    Huo, Silu
    Xu, Min
    Wu, Linlin
    Liu, Mingjie
    Xue, Yifei
    Yan, Yi-Ming
    ELECTROCHIMICA ACTA, 2018, 274 : 389 - 399
  • [3] N/O co-doped microporous carbon as a high-performance electrode for supercapacitors
    Yan, Jing-jing
    Fang, Xiao-hao
    Yao, De-zhou
    Zhu, Cheng-wei
    Shi, Jian-jun
    Qian, Shan-shan
    NEW CARBON MATERIALS, 2025, 40 (01) : 231 - 242
  • [4] Oxygen/phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors
    Chen, Bingwei
    Wu, Wenzhuo
    Li, Chunyang
    Wang, Yanfang
    Zhang, Yi
    Fu, Lijun
    Zhu, Yusong
    Zhang, Lixin
    Wu, Yuping
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Oxygen/phosphorus co-doped porous carbon from cicada slough as high-performance electrode material for supercapacitors
    Bingwei Chen
    Wenzhuo Wu
    Chunyang Li
    Yanfang Wang
    Yi Zhang
    Lijun Fu
    Yusong Zhu
    Lixin Zhang
    Yuping Wu
    Scientific Reports, 9
  • [6] Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors
    Wang, Juan
    Zhong, Qin
    Xiong, Yongheng
    Cheng, Danyu
    Zeng, Yiqing
    Bu, Yunfei
    APPLIED SURFACE SCIENCE, 2019, 483 : 1158 - 1165
  • [7] Facile 3D Nitrogen-Doped Hierarchical Porous Carbon for High-Performance Supercapacitors
    Cai, Jiangtao
    Hou, Liuhua
    Chen, Chen
    Lan, Yujin
    Dang, Yongqiang
    Zhu, Youyu
    Zhang, Jianlan
    Zhao, Shiyong
    Zhang, Yating
    ENERGY TECHNOLOGY, 2022, 10 (10)
  • [8] In situ N, O co-doped porous carbon derived from antibiotic fermentation residues as electrode material for high-performance supercapacitors
    Qin, Shumeng
    Liu, Peiliang
    Wang, Jieni
    Liu, Chenxiao
    Wang, Qizhao
    Chen, Xuanyu
    Zhang, Shuqin
    Tian, Yijun
    Zhang, Fangfang
    Wang, Lin
    Wei, Zhangdong
    Cao, Leichang
    Zhang, Jinglai
    Zhang, Shicheng
    RSC ADVANCES, 2023, 13 (34) : 24140 - 24149
  • [9] Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors
    Chen, Yinan
    Hao, Huilian
    Lu, Xuekun
    Li, Wenyao
    He, Guanjie
    Shen, Wenzhong
    Shearing, Paul R.
    Brett, Dan J. L.
    NANOTECHNOLOGY, 2021, 32 (19)
  • [10] Titanium and nitrogen co-doped porous carbon for high-performance supercapacitors†
    Chen, Yurou
    Feng, Xin
    Wang, Qi
    Gu, WenXian
    Wu, Wanyi
    Peng, Xuqiang
    Jin, Huile
    Wang, Jichang
    Wang, Shun
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (09) : 3628 - 3635