Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence

被引:376
作者
Masclaux, C [1 ]
Valadier, MH [1 ]
Brugière, N [1 ]
Morot-Gaudry, JF [1 ]
Hirel, B [1 ]
机构
[1] INRA, Ctr Versailles, Unite Nutr Azotee Plantes, F-78026 Versailles, France
关键词
glutamate dehydrogenase; glutamine synthetase; leaf senescence; metabolic signals; Nicotiana (N metabolism); nitrogen metabolism;
D O I
10.1007/s004250000310
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The metabolic, biochemical and molecular events occurring during tobacco (Nicotiana tabacum) leaf ageing are presented, with a particular emphasis on nitrogen metabolism. An integrated model describing the source/sink relationship existing between leaves of different developmental stages along the main plant axis is proposed. The results of our study show that a tobacco plant can be divided into two main sections with regards to sink/source relationships. Sink-to-source transition occurs at a particular leaf stage in which a breakpoint corresponding to an accumulation of carbohydrates and a depletion of both organic and inorganic nitrogen is observed. The sink/source transition is also marked by the appearence of endoproteolytic activities and the induction of both cytosolic glutamine synthetase and NAD(H)-dependent glutamate dehydrogenase transcripts. proteins and activities. The role of the newly induced enzymes and the nature of the potential metabolic and developmental signals involved in the regulation of their expression during leaf senescence are discussed.
引用
收藏
页码:510 / 518
页数:9
相关论文
共 51 条
[1]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[2]   NUCLEOTIDE-SEQUENCE OF A TOBACCO CDNA-ENCODING PLASTIDIC GLUTAMINE-SYNTHETASE AND LIGHT INDUCIBILITY, ORGAN SPECIFICITY AND DIURNAL RHYTHMICITY IN THE EXPRESSION OF THE CORRESPONDING GENES OF TOBACCO AND TOMATO [J].
BECKER, TW ;
CABOCHE, M ;
CARRAYOL, E ;
HIREL, B .
PLANT MOLECULAR BIOLOGY, 1992, 19 (03) :367-379
[3]   The metabolism and functions of gamma-aminobutyric acid [J].
Bown, AW ;
Shelp, BJ .
PLANT PHYSIOLOGY, 1997, 115 (01) :1-5
[4]   Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted to the mesophyll cytosol [J].
Brugière, N ;
Dubois, F ;
Masclaux, C ;
Sangwan, RS ;
Hirel, B .
PLANTA, 2000, 211 (04) :519-527
[5]   The molecular biology of leaf senescence [J].
BuchananWollaston, V .
JOURNAL OF EXPERIMENTAL BOTANY, 1997, 48 (307) :181-199
[6]   A STUDY OF THE ROLE OF GLUTAMATE-DEHYDROGENASE IN THE NITROGEN-METABOLISM OF ARABIDOPSIS-THALIANA [J].
CAMMAERTS, D ;
JACOBS, M .
PLANTA, 1985, 163 (04) :517-526
[7]   RAPID COLORIMETRIC DETERMINATION OF NITRATE IN PLANT-TISSUE BY NITRATION OF SALICYLIC-ACID [J].
CATALDO, DA ;
HAROON, M ;
SCHRADER, LE ;
YOUNGS, VL .
COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 1975, 6 (01) :71-80
[8]  
Coic Y., 1971, Hortic Francaise, V8, P11
[9]   COP1 - A REGULATORY LOCUS INVOLVED IN LIGHT-CONTROLLED DEVELOPMENT AND GENE-EXPRESSION IN ARABIDOPSIS [J].
DENG, XW ;
CASPAR, T ;
QUAIL, PH .
GENES & DEVELOPMENT, 1991, 5 (07) :1172-1182
[10]   Localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ- and cell-specific patterns of protein synthesis and gene expression [J].
Dubois, F ;
Brugiere, N ;
Sangwan, RS ;
Hirel, B .
PLANT MOLECULAR BIOLOGY, 1996, 31 (04) :803-817