Input-to-State Safety With Control Barrier Functions

被引:195
作者
Kolathaya, Shishir [1 ]
Ames, Aaron D. [2 ]
机构
[1] Indian Inst Sci, Robert Bosch Ctr Cyber Phys Syst, Bengaluru 560012, India
[2] CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2019年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
Safety critical control; barrier functions; input-to-state safety; autonomous systems;
D O I
10.1109/LCSYS.2018.2853698
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a new notion of input-to-state safe control barrier functions (ISSf-CBFs), which ensure safety of nonlinear dynamical systems under input disturbances. Similar to how safety conditions are specified in terms of forward invariance of a set, input-to-state safety conditions are specified in terms of forward invariance of a slightly larger set. In this context, invariance of the larger set implies that the states stay either inside or very close to the smaller safe set; and this closeness is bounded by the magnitude of the disturbances. The main contribution of the letter is the methodology used for obtaining a valid ISSf-CBF, given a control barrier function. The associated universal control law will also be provided. Towards the end, we will study unified quadratic programs that combine control Lyapunov functions and ISSf-CBFs in order to obtain a single control law that ensures both safety and stability in systems with input disturbances.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 19 条
[1]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[2]  
Ames AD, 2014, IEEE DECIS CONTR P, P6271, DOI 10.1109/CDC.2014.7040372
[3]   A characterization of integral input-to-state stability [J].
Angeli, D ;
Sontag, ED ;
Wang, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (06) :1082-1097
[4]  
[Anonymous], 2007, IFAC P
[5]  
Li Wang, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P3293, DOI 10.1109/ICRA.2017.7989375
[6]  
Paul R.P., 1984, ROBOTICS RESEARCHES, P783
[7]  
Prajna S., 2005, IFAC Proceedings, V38, P526
[8]   Convex programs for temporal verification of nonlinear dynamical systems [J].
Prajna, Stephen ;
Rantzer, Anders .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) :999-1021
[9]  
Nguyen Q, 2017, ROBOTICS: SCIENCE AND SYSTEMS XIII
[10]  
Nguyen Q, 2016, P AMER CONTR CONF, P322, DOI 10.1109/ACC.2016.7524935