Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria

被引:39
|
作者
Ngwenya, N. [1 ]
Chirwa, E. M. N. [1 ]
机构
[1] Univ Pretoria, Dept Chem Engn, Water Utilisat Div, ZA-0002 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Spent fuel reprocessing; Sulphate reducing bacteria; Nuclear waste processing; STRONTIUM; BIOSORPTION; ADSORPTION; REMOVAL; CESIUM; IONS; EQUILIBRIUM; PHOSPHATE; EXPOSURE; LEUKEMIA;
D O I
10.1016/j.mineng.2009.11.006
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study investigates the removal of the fission products Sr2+, Cs+ and Co2+ in single and binary metal solutions by a sulphate reducing bacteria (SRB) biomass. The effect of initial concentration and pH on the sorption kinetics of each metal was evaluated in single metal solutions. Binary component equilibrium sorption studies were performed to investigate the competitive binding behaviour of each metal in the presence of a secondary metal ion. Results obtained from single metal equilibrium sorption studies indicated that SRB have a higher binding capacity for Sr2+ (q(max) =416.7 mg g(-1)), followed by Cs+ (q(max) = 238.1 mg g(-1)), and lastly Co2+ (q(max) = 204.1 mg g(-1)). Among the binary systems investigated, Co2+ uptake was the most sensitive, resulting in a 76% reduction of the sorption capacity (q(max)) in the presence of Cs+. These findings are significant for future development of effective biological processes for radioactive waste management under realistic conditions. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 50 条
  • [1] Removal of Cs+, Sr2+, and Co2+ Ions from the Mixture of Organics and Suspended Solids Aqueous Solutions by Zeolites
    Fang, Xiang-Hong
    Fang, Fang
    Lu, Chun-Hai
    Zheng, Lei
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2017, 49 (03) : 556 - 561
  • [2] Diffusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder
    Ibrahim, H. A.
    Hassan, H. S.
    Mekhamer, H. S.
    Kenawy, S. H.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2019, 319 (01) : 1 - 12
  • [3] Capture of Cs+ and Sr2+ from Aqueous Solutions by Using Cr Doped TiO2 Nanotubes
    Zhang, Youkui
    Hu, Zuowen
    Cui, Xudong
    Yao, Weitang
    Duan, Tao
    Zhu, Wenkun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (06) : 3943 - 3950
  • [4] Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)
    Ma, Bin
    Oh, Sanghwa
    Shin, Won Sik
    Choi, Sang-June
    DESALINATION, 2011, 276 (1-3) : 336 - 346
  • [5] Adsorption of Co2+ and Sr2+ from aqueous solution by chitosan grafted with EDTA
    Zhuang, Shuting
    Zhang, Qian
    Wang, Jianlong
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 325
  • [6] Assessment of kinetic and isotherm models for competitive sorption of Cs+ and Sr2+ from binary metal solution onto nanosized zeolite
    Ibrahim, H. A.
    Moamen, O. A. Abdel
    Monem, N. Abdel
    Ismail, I. M.
    CHEMICAL ENGINEERING COMMUNICATIONS, 2018, 205 (09) : 1274 - 1287
  • [7] Adsorptive removal of Sr2+ and Cs+ from aqueous solution by capacitive deionization
    Liu, Xiaojing
    Wang, Jianlong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (03) : 3182 - 3195
  • [8] Diffusion and sorption of Cs+ and Sr2+ ions onto synthetic mullite powder
    H. A. Ibrahim
    H. S. Hassan
    H. S. Mekhamer
    S. H. Kenawy
    Journal of Radioanalytical and Nuclear Chemistry, 2019, 319 : 1 - 12
  • [9] Removal of Sr2+, Co2+, and Cs+ from Aqueous Solution by Immobilized Saccharomyces cerevisiae with Magnetic Chitosan Beads
    Yin, Yanan
    Hu, Jun
    Wang, Jianlong
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (04) : 989 - 996
  • [10] Removal of Cs+, Sr2+ and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies
    Mahmoud M. S. Ali
    N. M. Sami
    A. A. El-Sayed
    Journal of Radioanalytical and Nuclear Chemistry, 2020, 324 : 189 - 201