Purpose: To determine the agreement of proton density fat fraction (PDFF) measurements obtained with hepatic magnetic resonance (MR) imaging among readers, imager manufacturers, and field strengths. Materials and Methods: This HIPAA-compliant study was approved by the institutional review board. After providing informed consent, 24 adult volunteers underwent imaging with one 1.5-T MR unit (Ingenia; Philips Healthcare, Best, the Netherlands) and two different 3.0-T units (750 W [GE Healthcare, Waukesha, Wis] and Ingenia) on the same day to estimate hepatic PDFF. A single-breath-hold multipoint Dixon-based acquisition was performed with commercially available pulse sequences provided by the MR imager manufacturers (mDIXON Quant [Philips Healthcare], IDEAL IQ [GE Healthcare]). Five readers placed one large region of interest, inclusive of as much liver parenchyma as possible in the right lobe while avoiding large vessels, on imager-generated parametric maps to measure hepatic PDFF. Two-way single-measure intraclass correlation coefficients (ICCs) were used to assess interreader agreement and agreement across the three imaging platforms. Results: Excellent interreader agreement for hepatic PDFF measurements was obtained with mDIXON Quant and the Philips 1.5-T unit (ICC, 0.995; 95% confidence interval [CI]: 0.991, 0.998), mDIXON Quant and the Philips 3.0-T unit (ICC, 0.992; 95% CI: 0.986, 0.996), and IDEAL IQ and the GE 3.0-T unit (ICC, 0.966; 95% CI: 0.939, 0.984). Individual reader ICCs for hepatic PDFF measurements across all three imager manufacturer-field strength combinations also showed excellent interimager agreement, ranging from 0.914 to 0.954. Conclusion: Estimation of PDFF with hepatic MR imaging by using multipoint Dixon techniques is highly reproducible across readers, field strengths, and imaging platforms. (C) RSNA, 2017