Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws

被引:31
|
作者
Dedner, Andreas
Makridakis, Charalambos
Ohlberger, Mario
机构
[1] Univ Freiburg, Abt Angew Math, D-79104 Freiburg, Germany
[2] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Greece
关键词
discontinuous Galerkin; higher order; adaptive methods; error estimate; finite element;
D O I
10.1137/050624248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an a posteriori error estimate for the Runge-Kutta discontinuous Galerkin method (RK-DG) of arbitrary order in arbitrary space dimensions. For stabilization of the scheme a general framework of projections is introduced. Finally it is demonstrated numerically how the a posteriori error estimate is used to design both an efficient grid adaption and gradient limiting strategy. Numerical experiments show the stability of the scheme and the gain in efficiency in comparison with computations on uniform grids.
引用
收藏
页码:514 / 538
页数:25
相关论文
共 50 条
  • [21] Local discontinuous Galerkin methods with explicit Runge-Kutta time marching for nonlinear carburizing model
    Xia, Chenghui
    Li, Ying
    Wang, Haijin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4376 - 4390
  • [22] The Runge-Kutta control volume discontinuous finite element method for systems of hyperbolic conservation laws
    Chen, Dawei
    Yu, Xijun
    Chen, Zhangxin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (06) : 771 - 786
  • [23] Error estimates for the Runge-Kutta discontinuous galerkin method for the transport equation with discontinuous initial data
    Cockburn, Bernardo
    Guzman, Johnny
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1364 - 1398
  • [24] ERROR ESTIMATE OF THE FOURTH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
    Xu, Yuan
    Shu, Chi-Wang
    Zhang, Qiang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2885 - 2914
  • [25] Error Analysis of Explicit Partitioned Runge-Kutta Schemes for Conservation Laws
    Hundsdorfer, Willem
    Ketcheson, David I.
    Savostianov, Igor
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (03) : 633 - 653
  • [26] Runge-Kutta discontinuous Galerkin method for detonation waves
    Zhang, Lei
    Yuan, Li
    Jisuan Wuli/Chinese Journal of Computational Physics, 2010, 27 (04): : 509 - 517
  • [27] A Runge-Kutta discontinuous Galerkin method for the Euler equations
    Tang, HZ
    Warnecke, G
    COMPUTERS & FLUIDS, 2005, 34 (03) : 375 - 398
  • [28] Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods
    Zhou T.
    Li Y.
    Shu C.-W.
    Zhou, T., 2001, Kluwer Academic/Plenum Publishers (16) : 145 - 171
  • [29] Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids
    Kubatko, Ethan J.
    Dawson, Clint
    Westerink, Joannes J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (23) : 9697 - 9710
  • [30] Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics
    Zhao, Jian
    Tang, Huazhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 138 - 168