Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws

被引:31
|
作者
Dedner, Andreas
Makridakis, Charalambos
Ohlberger, Mario
机构
[1] Univ Freiburg, Abt Angew Math, D-79104 Freiburg, Germany
[2] Univ Crete, Dept Appl Math, GR-71409 Iraklion, Greece
关键词
discontinuous Galerkin; higher order; adaptive methods; error estimate; finite element;
D O I
10.1137/050624248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an a posteriori error estimate for the Runge-Kutta discontinuous Galerkin method (RK-DG) of arbitrary order in arbitrary space dimensions. For stabilization of the scheme a general framework of projections is introduced. Finally it is demonstrated numerically how the a posteriori error estimate is used to design both an efficient grid adaption and gradient limiting strategy. Numerical experiments show the stability of the scheme and the gain in efficiency in comparison with computations on uniform grids.
引用
收藏
页码:514 / 538
页数:25
相关论文
共 50 条
  • [1] Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws
    Zhang, Q
    Shu, CW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 641 - 666
  • [2] A Runge-Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes
    Qiao, Dian-Liang
    Zhang, Peng
    Lin, Zhi-Yang
    Wong, S. C.
    Choi, Keechoo
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 309 - 319
  • [3] Runge-Kutta and Lax-Wendroff Discontinuous Galerkin Methods for Linear Conservation Laws
    Shu, Chi-Wang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [4] The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems
    Cockburn, B
    Shu, CW
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) : 199 - 224
  • [5] Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws
    Zhang, Qiang
    Shu, Chi-Wang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1703 - 1720
  • [6] ERROR ESTIMATES OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL SYSTEM
    Yang, He
    Li, Fengyan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 69 - 99
  • [7] On a posteriori error estimation for Runge-Kutta discontinuous Galerkin methods for linear hyperbolic problems
    Georgoulis, Emmanuil H.
    Hall, Edward J. C.
    Makridakis, Charalambos G.
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [8] Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods
    Akrivis, Georgios
    Makridakis, Charalambos
    Nochetto, Ricardo H.
    NUMERISCHE MATHEMATIK, 2009, 114 (01) : 133 - 160
  • [9] Runge-Kutta discontinuous Galerkin methods for the special relativistic magnetohydrodynamics
    Zhao, Jian
    Tang, Huazhong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 343 : 33 - 72
  • [10] A Comparison of the Performance of Limiters for Runge-Kutta Discontinuous Galerkin Methods
    Zhu, Hongqiang
    Cheng, Yue
    Qiu, Jianxian
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (03) : 365 - 390