Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method

被引:24
作者
Fang, Y. [1 ]
Jayasuriya, D. [1 ]
Furniss, D. [1 ]
Tang, Z. Q. [1 ]
Sojka, L. [1 ,2 ]
Markos, C. [1 ,3 ]
Sujecki, S. [1 ,2 ]
Seddon, A. B. [1 ]
Benson, T. M. [1 ]
机构
[1] Univ Nottingham, Midinfrared Photon Grp, George Green Inst Electromagnet Res, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
[2] Wroclaw Univ Technol, Inst Telecommun Teleinformat & Acoust, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[3] Tech Univ Denmark, Dept Photon Engn, DTU Fotonik, Orsteds Plads 343, DK-2800 Lyngby, Denmark
基金
英国工程与自然科学研究理事会;
关键词
Chalcogenide glasses; Refractive index; Dispersion; OPTICAL-PROPERTIES; GLASSES; FIBER; FABRICATION; CONSTANTS;
D O I
10.1007/s11082-017-1057-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The well-known method presented by Swanepoel can be used to determine the refractive index dispersion of thin films in the near-infrared region from wavelength values at maxima and minima, only, of the transmission interference fringes. In order to extend this method into the mid-infrared spectral region (our measurements are over the wavelength range from 2 to 25 mu m), the method is improved by using a two-term Sellmeier model instead of the Cauchy model as the dispersive equation. Chalcogenide thin films of nominal batch composition As40Se60 (at.%) and Ge16As24Se15.5Te44.5 (at.%) are prepared by a hot-pressing technique. The refractive index dispersion of the chalcogenide thin films is determined by the improved method with a standard deviation of less than 0.0027. The accuracy of the method is shown to be better than 0.4% at a wavelength of 3.1 mu m by comparison with a benchmark refractive index value obtained from prism measurements on Ge16As24Se15.5Te44.5 material taken from the same batch.
引用
收藏
页数:19
相关论文
共 32 条
  • [1] Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip
    Abdel-Moneim, Nabil Sayed
    Mellor, Christopher J.
    Benson, Trevor M.
    Furniss, David
    Seddon, Angela B.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (02) : 351 - 361
  • [2] Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range
    Carlie, N.
    Anheier, N. C., Jr.
    Qiao, H. A.
    Bernacki, B.
    Phillips, M. C.
    Petit, L.
    Musgraves, J. D.
    Richardson, K.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (05)
  • [3] DETERMINING THE REFRACTIVE-INDEX AND AVERAGE THICKNESS OF ASSE SEMICONDUCTING GLASS-FILMS FROM WAVELENGTH MEASUREMENTS ONLY
    CORRALES, C
    RAMIREZMALO, JB
    FERNANDEZPENA, J
    VILLARES, P
    SWANEPOEL, R
    MARQUEZ, E
    [J]. APPLIED OPTICS, 1995, 34 (34): : 7907 - 7913
  • [4] Crawford F S., 1968, Waves
  • [5] Dantanarayana H., 2012, THESIS
  • [6] Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation
    Dantanarayana, Harshana G.
    Abdel-Moneim, Nabil
    Tang, Zhuoqi
    Sojka, Lukasz
    Sujecki, Slawomir
    Furniss, David
    Seddon, Angela B.
    Kubat, Irnis
    Bang, Ole
    Benson, Trevor M.
    [J]. OPTICAL MATERIALS EXPRESS, 2014, 4 (07): : 1444 - 1455
  • [7] Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission
    Falconi, Mario Christian
    Palma, Giuseppe
    Starecki, Florent
    Nazabal, Virginie
    Troles, Johann
    Adam, Jean-Luc
    Taccheo, Stefano
    Ferrari, Maurizio
    Prudenzano, Francesco
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (02) : 265 - 273
  • [8] Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF Fiber Laser
    Falconi, Mario Christian
    Palma, Giuseppe
    Starecki, Florent
    Nazabal, Virginie
    Troles, Johann
    Taccheo, Stefano
    Ferrari, Maurizio
    Prudenzano, Francesco
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (18) : 1984 - 1987
  • [9] Fang Y., 2016, P 18 INT C TRANSP OP
  • [10] Fowles G. R., 1975, INTRO MODERN OPTICS, P44