Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method

被引:25
作者
Fang, Y. [1 ]
Jayasuriya, D. [1 ]
Furniss, D. [1 ]
Tang, Z. Q. [1 ]
Sojka, L. [1 ,2 ]
Markos, C. [1 ,3 ]
Sujecki, S. [1 ,2 ]
Seddon, A. B. [1 ]
Benson, T. M. [1 ]
机构
[1] Univ Nottingham, Midinfrared Photon Grp, George Green Inst Electromagnet Res, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
[2] Wroclaw Univ Technol, Inst Telecommun Teleinformat & Acoust, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[3] Tech Univ Denmark, Dept Photon Engn, DTU Fotonik, Orsteds Plads 343, DK-2800 Lyngby, Denmark
基金
英国工程与自然科学研究理事会;
关键词
Chalcogenide glasses; Refractive index; Dispersion; OPTICAL-PROPERTIES; GLASSES; FIBER; FABRICATION; CONSTANTS;
D O I
10.1007/s11082-017-1057-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The well-known method presented by Swanepoel can be used to determine the refractive index dispersion of thin films in the near-infrared region from wavelength values at maxima and minima, only, of the transmission interference fringes. In order to extend this method into the mid-infrared spectral region (our measurements are over the wavelength range from 2 to 25 mu m), the method is improved by using a two-term Sellmeier model instead of the Cauchy model as the dispersive equation. Chalcogenide thin films of nominal batch composition As40Se60 (at.%) and Ge16As24Se15.5Te44.5 (at.%) are prepared by a hot-pressing technique. The refractive index dispersion of the chalcogenide thin films is determined by the improved method with a standard deviation of less than 0.0027. The accuracy of the method is shown to be better than 0.4% at a wavelength of 3.1 mu m by comparison with a benchmark refractive index value obtained from prism measurements on Ge16As24Se15.5Te44.5 material taken from the same batch.
引用
收藏
页数:19
相关论文
共 32 条
[1]   Fabrication of stable, low optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip [J].
Abdel-Moneim, Nabil Sayed ;
Mellor, Christopher J. ;
Benson, Trevor M. ;
Furniss, David ;
Seddon, Angela B. .
OPTICAL AND QUANTUM ELECTRONICS, 2015, 47 (02) :351-361
[2]   Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range [J].
Carlie, N. ;
Anheier, N. C., Jr. ;
Qiao, H. A. ;
Bernacki, B. ;
Phillips, M. C. ;
Petit, L. ;
Musgraves, J. D. ;
Richardson, K. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (05)
[3]   DETERMINING THE REFRACTIVE-INDEX AND AVERAGE THICKNESS OF ASSE SEMICONDUCTING GLASS-FILMS FROM WAVELENGTH MEASUREMENTS ONLY [J].
CORRALES, C ;
RAMIREZMALO, JB ;
FERNANDEZPENA, J ;
VILLARES, P ;
SWANEPOEL, R ;
MARQUEZ, E .
APPLIED OPTICS, 1995, 34 (34) :7907-7913
[4]  
Crawford F S., 1968, Waves
[5]  
Dantanarayana H., 2012, THESIS
[6]   Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation [J].
Dantanarayana, Harshana G. ;
Abdel-Moneim, Nabil ;
Tang, Zhuoqi ;
Sojka, Lukasz ;
Sujecki, Slawomir ;
Furniss, David ;
Seddon, Angela B. ;
Kubat, Irnis ;
Bang, Ole ;
Benson, Trevor M. .
OPTICAL MATERIALS EXPRESS, 2014, 4 (07) :1444-1455
[7]   Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission [J].
Falconi, Mario Christian ;
Palma, Giuseppe ;
Starecki, Florent ;
Nazabal, Virginie ;
Troles, Johann ;
Adam, Jean-Luc ;
Taccheo, Stefano ;
Ferrari, Maurizio ;
Prudenzano, Francesco .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (02) :265-273
[8]   Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF Fiber Laser [J].
Falconi, Mario Christian ;
Palma, Giuseppe ;
Starecki, Florent ;
Nazabal, Virginie ;
Troles, Johann ;
Taccheo, Stefano ;
Ferrari, Maurizio ;
Prudenzano, Francesco .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (18) :1984-1987
[9]  
Fang Y., 2016, P 18 INT C TRANSP OP
[10]  
Fowles G. R., 1975, INTRO MODERN OPTICS, P44